Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий применение

    В техническом катализе (например, в процессах каталитического риформинга и гидрокрекинга) нашли широкое применение бифункциональные катализаторы, состоящие из носителя кислотного типа (окись алюминия, алюмосиликаты, промотированные галоидами, цеолитом и др.) с нанесенным на него ме таллом — катализатором гомолитических реакций (Pt, Pd, Со, Ni, Mo и др.). [c.81]


    Наличие в поступающей на переработку нефти хлоридов и воды способствует хлористоводородной коррозии оборудования, приводит к длительным простоям технологических установок, сокращает срок службы дорогостоящих катализаторов, используемых во вторичных процессах, ухудшает качество товарных нефтепродуктов. В связи с продолжающимся укрупнением нефтеперерабатывающих установок и широким применением вторичных процессов жестче становятся требования к содержанию хлоридов в нефти, поступающей на переработку. При снижении содержания хлоридов до 5 мг/л из нефти удаляются такие ме-. таллы, как железо, кальций и магний содержание ванадия снижается более чем в два раза. В настоящее время на многих нефтеперерабатывающих заводах переработке подвергаются нефти с содержанием хлоридов не более 3 мг/л. [c.10]

    Очищенную азотнокислую соль таллия подвергают электролизу с применением платиновых электродов. Анодное и катодное пространства разделяют. Анод заключен в керамиковую или пластмассовую диафрагму, и в нее заливают раствор с 0,1-н. НЫОз. В катодное пространство подают раствор 90 г/л ТШОз. Плотность тока поддерживают 1000 а/м . При этом получают металл очень высокой чистоты. [c.564]

    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]


    Таллий и его соединения имеют небольшое по объему, но разнообразное применение. Галогениды таллия хорошо пропускают инфракрасные лучи. Поэтому они используются в оптических приборах, работающих в инфракрасной области спектра. Карбонат таллия служит для изготовления стекол с высокой преломляющей способностью. Таллий входит в состав вещества электрода селенового выпрямителя, является активатором многих люминофоров. Сульфид таллия используется в фотоэлементах. Металлический таллий — компонент многих свинцовых сплавов подшипниковых, кислотоупорных, легкоплавких. [c.403]

    Применение физико-химических методов к изучению равновесных систем из металлов позволило обнаружить вещества, которые расширяют наши представления о химическом соединении и применении законов стехиометрии. Одним из наиболее интересных веществ этого класса химических соединений может служить так называемая у-фаза в системе таллий — висмут (рис. 1.5). Заштрихованные части диаграммы на рис. 1.5 принадлежат к области выделения твердых растворов. Состав у-фазы изменяется в пределах 55—64% Bi она разделена двумя эвтектическими разрывами сплошности. Кривая плавкости DEF с максимумом Е при 62,8% Bi, а также изученная микроструктура показывают, что у-фаза обладает свойствами, которые в других системах характерны для химических соединений. Но сингулярная точка для у-фазы отсутствует. Термический максимум Е диаграммы плавкости при 62,8% Bi ничем не проявляется на изотермах электрической проводимости (273—448 К), твердости и других свойств. Исследуемое у-вещество является, по Курнакову, одним из многочисленных представителей [c.22]

    Карбид, а также некоторые сплавы и соединения бора находят применение в ядерной технике в связи с его способностью поглощать нейтроны. Галлий, индий, таллий и их соединения используются в приборостроении и при получении полупроводниковых материалов. [c.74]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Существуют различные методы анализа с применением радиоактивных индикаторов. В простейшем случае ионы определяемого элемента осаждают действием реагента, меченного радиоактивным изотопом. Таллий, например, осаждают в виде ТП при действии и затем определяют радиометрически- [c.315]

    Запасы алюминия сосредоточены в больших количествах в земной коре в виде минералов (алюминий — самый распространенный элемент в земной коре после кислорода и кремния), тогда как галлий, индий и таллий принадлежат к рассеянным элементам, содержание их в рудах не превышает обычно тысячных долей процента. Все эти металлы получают в настоящее время электролитическими методами. Наибольшее применение изо всех металлов П1 группы находит алюминий (см. 3, гл. XVI). [c.330]

    Ввиду трудности получения и ограниченности применения галлия, индия и таллия мировое производство каждого из них невелико, но за последнее десятилетие резко возросло. [c.187]

    Применение галлия, индия и таллия в современной технике основано на специфических свойствах каждого из них. [c.187]

    Применение галлия, индия и таллия. Жидкий, долго незатвердевающий и хорошо смачивающий стекло галлий используют для изготовления термометров, позволяющих измерять температуру до 1500°С. Считается перспективным применение галлия как жидкого теплоносителя в атомных реакторах. [c.307]

    Важнейшие области применения. В последние годы значение рубидия и особенно цезия в технике заметно повысилось. Можно указать на следующие основные направления использования обоих редких ме таллов и их соединений [6, 7, 9, 25, 148, 1491  [c.114]


    Из-за отсутствия собственных руд возможный объем производства рассеянных элементов обусловлен масштабом переработки руд цветных металлов, используемых для их получения. Но в настоящее время используется только небольшая доля возможного сырья. Дело в том, что, несмотря на крайнюю важность некоторых областей их применения (например, полупроводниковая техника), промышленность потребляет сравнительно небольшие количества галлия, индия и таллия. [c.225]

    Другие методы химического рафинирования. Находит применение иодидный способ. Индий расплавляют под слоем глицеринового раствора К1 с иодом [129]. Примеси, обладающие большим по сравнению с индием сродством к иоду, такие, как кадмий и таллий, переходят в глицериновый раствор, где связываются в иодидный комплекс  [c.320]

    Важнейшие области применения. Таллий и его соединения находят все возрастающее применение в различных отраслях науки и техники [185]. Одна из наиболее важных областей применения — инфракрасная техника. Кристаллы твердых растворов (рис. 83) бромида и иодида таллия (КРС-5), бромида и хлорида таллия (КРС-6) прозрачны для широкого диапазона инфракрасных лучей. Поэтому из таких монокристаллов изготавливают окна, линзы и призмы для различных оптических приборов. Монокристаллы хлорида таллия (I) используют при изготовлении счетчиков Черенкова, применяющихся для регистрации и исследования частиц высоких энергий. Кристаллы галогенидов щелочных металлов, активированные добавками бромида или иодида таллия, являются кристаллофосфорами и применяются, в частности, в сцинтилляционных счетчиках для обнаружения и измерения радиоактивного излучения. [c.337]

    Для определения иодата в иодидах натрия, цезия, кальция и в монокристаллах иодидов натрия и цезия, активированных таллием, применен метод, основанный на измерении оптической плотности раствора иода, выделяющегося в кислой среде [71]. Перйодат в слабокислой среде образует с бензоилгидразином окрашенное соединение с максимумом поглощения при 405 нм, в виде которого [c.344]

    Лучше всего применять для этой цели треххлористый таллий. Применение трехбромистого таллия вызывает побочные реакции. Непредельные RgTlX получены через магнийорганические соединения лишь на примере виниловых производных. [c.416]

    Использование галлия, индия и таллия в технике. Применение галлия, ИНДИЯ и таллия б согфеменной технике основано на специфических свойствах каждого из них. [c.339]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Для исследования кинетических закономерностей электрохимических реакций и установления их механизма часто используют капельные электроды из ртути, галлия, сплавов ртути и галлия с индием, таллием и другими металлами (амальгамы и галламы металлов). Наиболее широкое распространение получил ртутный капельный электрод, впервые примененный для электрохимических исследований Я. Гейровским (1922). По предложению Я. Гейровского, зависимость тока, текущего на капельный ртутный электрод, от потенциала электрода, была названа полярограммой, а метод измерения поляризационных кривых на капельных. электродах — полярографическим. [c.223]

    В последние десятилетия получили широкое распространение сцинтиляционные счетчики. Они состоят из люминес-цирующего кристалла (например, Ыа I, активированный таллием), фотоэлектронного умножителя и усилителя. Рентгеновский квант вызывает ионизацию большого чиспа атомов или ионов в кристалле, которые испускают ультрафиолетовое излучение, возвращаясь в стабильное состояние. Кванты этого излучения выбивают электроны с катода фотоумножителя, которые после ускорения попадают на электрод умно-жительной системы (динод). Каждый из электронов выбивает вторичные электроны, и после повторения этого процесса на 10-15 каскадах первоначальный импульс усиливается в Ю" -10 раз. Для регистрации достаточно усиления этих импульсов примерно в тысячу раз. Как и в случае пропорциональных счетчиков, амплитуда импульса пропорциональна энергии кванта и возможно применение хшфференциальной дискриминации (с теми же оговорками относительно статистического характера процесса). [c.24]

    Метод основан на взаимодействии бромидного комплекса индия с родамином 6Ж. Образующееся соединение экстрагируют бензолом из 15 н. серной кислоты и определяют концентрацию индия по интенснвно-сти флуоресценции экстракта. Мешающие ионы железа (III), меди (II), олова (IV), сурь.мы (III), таллия (III), золота (III), ртути (II) удаляют при экстракции индия бутилацетатом с последующей реэкстракцнеи хлористоводородной кислотой. Возможен ускоренный вариант отделения мешающих элементов с применением двукратного осаждения аммиаком и цементации на металлическом железе. [c.388]

    Алюминий, галлий, индий и таллий химически активны и образуют многочисленные соединения. По мере увеличения порядкового номера металлические свойства увеличиваются так, если гидроокись алюминия обладает ярко выраженными амфогерными свойствами (см. 2, 3, гл X), то амфотерность гидроокисей галлия и индия проявляется намного слабее, а гидроокись таллия амфотерных свойств вообще не проявляет. Все эти элементы сходны по своим физико-химическим свойствам (окислы и гидроокиси амфотерны, способность солей к сильному гидролизу и т. д.), все элементы в чистом виде, а также их сплавы и соединения находят разнообразное применение и широко используются в современной технике. [c.330]

    Высокочастотные безэлектродные лампы. При определении таких элементов, как мышьяк, висмут, сурьма, селен, теллур, таллий, свинец, хорошие результаты были получены при использовании безэлектродных ламп с высокочастотным (ВЧ) возбуждением. Спектральные высокочастотные безэлектродные лампы представляют собой сферические (рис. 8.6, а, б) или цилиндрические (рис. 8.6, в, г) баллоны из стекла или кварца, нанолненные инертным -азом при низком давлении. В баллон, снабженный отростком, помещается небольшое количество чистого металла либо его соли. Имея более низкую температуру, чем остальной баллон, отросток стабилизирует раснределение температуры в ламие и устраняет перемещение металла по внутренней ее но-верхности, уменьшая релаксационные колебания интенсивности излучения. Копструкцин, изображенные на рис. 8.6, а, б, предназначены для применения в ВЧ-генераторах (20—200 МГц), а конструкции, представленные на рис. 8.6, в, г, — в СВЧ-геиераторах [c.146]

    Л талл индий отличается мягкостью (мягче свинца), серебристостью (отражательная способность выше серебра) и невысокой температурой плавления (156°). В связи с этим он находит применение при изгог< Рлении некоторых легкоплавких сплавов, для покрытия рефлекторов, а также для противокоррозионных покрытий (дал<е тонким слой индия хорошо предохраняет металл от атмосферных влияний). [c.426]

    Соединения таллия находят применение при производстве специальных оптических стекол и светяш,ихся составов, а также в медицине и фотографии. [c.426]

    Препарат крысид — сложное органическое вещество, служит для уничтожения крыс в амбарах. Для истребления грызунов важную роль играет также сульфат таллия TI2SO4. Сусликов отравляют в норках сероуглеродом Sa- Железный купорос FeSOi-THaO находит применение для уничтожения улиток (они приносят большой вред огородным культурам). [c.487]

    В современном машиностроении хром, молибден и вольфрам полу чили очень широкое применение как легирующие компоненты сталей никелевых и медных сплавов. Появились сплавы на основе молибде на и вольфрама для деталей, работающих при высоких температурах Применяют также чистые металлы и их соединения (карбиды). В ма шиностроительной технологии используются оксиды и соли этих ме таллов. [c.112]

    Т. В. Ч е р к а ш и н а. Материалы совещания по вопросам производства и применения индия, галлия и таллия. Информация 2 (13), ч. 1. Гиред-мет, 1960. [c.229]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов, В перво(1 части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии, В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов н отходов прэизводства, современные методы разделения и очистки элементов. [c.2]

    Некоторые внутрикомплексные соединения — дитизонат, тиона-лидат, диэтилдитиокарбаминат таллия, тиомочевинный комплекс [Т1(С8Ы2Н4)41НОз и т. п. — находят применение в аналитической химии [151]. Комплексы таллия (I) с ЭДТА по устойчивости превосходят комплексы с другими лигандами. Для таллия (I) в отличие от меди и серебра не характерно комплексообразование с аммиаком и органическими аминами. В этом отношении таллий ближе к щелочным металлам. [c.336]


Смотреть страницы где упоминается термин Таллий применение: [c.73]    [c.209]    [c.61]    [c.339]    [c.333]    [c.325]    [c.74]    [c.812]    [c.229]    [c.500]    [c.184]    [c.225]    [c.231]    [c.167]    [c.183]    [c.181]   
Неорганическая химия Том 1 (1971) -- [ c.347 , c.348 ]

Основы общей химии Том 2 (1967) -- [ c.218 , c.219 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2024 chem21.info Реклама на сайте