Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Берцелиуса процесс получения

    У. к. первая из кислот, известных человеку (уксус, образующийся при скисании вина). Концентрированная У. к. впервые получена в 1700 г. Шталем, состав ее установлен в 1814 г. Я- Берцелиусом. У. к. распространена в растениях как в свободном виде, так и в виде солей и сложных эфиров образуется в процессе брожения и гниения молочных продуктов. Превращение спиртовых жидкостей в уксус (3—15% У. к.) происходит под действием бактерий уксусного гриба . Промышленный метод получения заключается в окислении ацетальдегида, который синтезируют из ацетилена по реакции Кучерова. У. к. широко применяется значительное количество ее идет на производство ацетона, ацетилцеллюлозы, синтетических лаков и красителей, лекарственных препаратов (аспирин, фенацетин), для крашения и печатания тканей. У. к. применяется также для введения ацетильной группы СН3СО в ароматические амины, для защиты группы КНа от окисления при нитровании в аналитической химии в пищевой промышленности и быту в виде уксуса в медицине и др. Применение находят также соли У. к.— ацетаты. Соли А1, Ре, Сг и др. используются как протравы при крашении тканей. [c.258]


    Первое промышленное использование катализатора было осуществлено в 1746 г. Дж. Робеком при камерном получении серной кислоты. В то время Берцелиус еще не ввел термина катализ , это произошло в 1836 г. Раннее развитие катализа в 800-е гг. происходило в промышленной неорганической химии и было связано с процессами получения диоксида углерода, триоксида серы и хлора. В 1897 г. П. Сабатье и Ж. Сандеран обнаружили, что никель является хорошим катализатором гидрирования. В своей книге Катализ в органической химии П. Сабатье [3] рисует блестящие перспективы развития катализа в начале XX в. В это время еще трудно было ответить на вопросы о переходных состояниях, адсорбции и механизмах каталитических реакций, но Сабатье уже ставил правильные вопросы. Оказалась плодотворной его идея о временных, неустойчивых промежуточных соединениях, образующихся при катализе. Он жаловался на неудовлетворительное состояние знаний, но уже в пе-риод с 1900 по 1920 г. появились успехи во многих областях науки. Это было время Оствальда, Гиббса, Боша, Ипатьева, Эйнштейна, Планка, Бора, Резерфорда и др. Незадолго до 1900 г. свой вклад в органическую химию внесли такие ученые, как Э. Фишер, Кекуле, Клайзен, Фиттиг, Зандмейер, Фаворский, Дикон, Дьюар, Фридель и Крафте. [c.14]

    Открытие электролиза позволило легко проводить такие окислительно-восстановительные процессы, которые обычными химическими способами осуществить чрезвычайно трудно. В 1807—1808 гг. Г. Дэви, пропуская электрический ток через кусок едкой щелочи, слегка смоченной водой, обнаружил около отрицательного электрода шарик металла, обладавшего неизвестными ранее свойствами. Так были открыты сначала щелочные, а затем щелочноземельные металлы. Одновременно это же открытие было сделано С. П. Власовым. Исследования Г. Дэви имели большое значение для развития химических представлений о простых и сложных телах (так, до получения щелочных металлов в свободном состоянии едкие щелочи считались простыми веществами). На основании исследований электролиза И. Берцелиус выдвинул электростатическую теорию химического сродства, впоследствии отвергнутую. [c.14]

    Существование нитрозилсерной кислоты (которая теперь признана обязательным промежуточным веществом) было Берцелиусу неизвестно. Образование же так называемых камерных кристаллов, которые по сути дела представляли собой как раз нитрозилсерную кислоту, Берцелиус объяснил нарушением процесса. Интересно, что еще гораздо раньше, в 1812 г., Г. Дэви считал образование камерных кристаллов необходимым промежуточным продуктом в камерном процессе получения серной кислоты [32]. В этом он расходился с Берцелиусом и был совершенно прав. В принципе же его схема окисления такая же, как и у Берцелиуса, т. е. происходит окисление окиси азота до двуокиси и обратное восстановление последней до окиси азота. [c.131]


    Систематизированный таким образом научный материал позволит читателю ознакомиться с успехами химии на каждом ее этапе — от истоков в древней натурфилософии до новейших достижений последней четверти текущего столетия. Это придает настоящему изданию действенный методологический характер. Чтобы правильно оценить нынешнее состояние химических знаний и предвидеть перспективы нашей науки, мы должны хорошо знать прошлое, отчетливо представлять себе дальнейшие пути научно-технического прогресса. Для того чтобы знать, что будет, надо знать, что было. Настоящее издание вносит весомый вклад и в решение этой, более общей, задачи. Выяснение тенденций развития химии осуществляется здесь посредством анализа взаимосвязей науки и производства, которые, как это с очевидностью следует из хронологии событий, усиливаются при переходе от ранних этапов истории химии к современности. Длительный период раздельного существования химических ремесел, с одной стороны, и натурфилософских толкований химизма, с другой — сменяется периодом формирования научной химии, явившейся уже в трудах Пруста и Бертолле, Дэви и Берцелиуса, Гей-Люссака и Тенара фундаментом становления также и химической технологии как науки. С появлением же структурной химии, открытием Менделеевым периодического закона, а в особенности с возникновением химической термодинамики и кинетики, происходит все более тесное сближение химии и химической технологии, обусловившее создание высокопроизводительных процессов получения самых разнообразных продуктов. Материал справочника показывает, что в исследованиях сегодняшнего дня — особенно тех, которые относятся к металлокомилекс-ному и ферментативному катализу, плазмохимии, кинетике неравновесных и нестационарных процессов, математическому моделированию технологических процессов,— все отчетливее просматриваются контуры химии и химической технологии грядущего столетия. [c.3]

    Несколько иначе обстоит дело с развитием работ в той области, которая послужила исходной позицией развития гомогенного катализа. Если иметь в виду самую сущность каталитических работ и первые объяснения каталитических явлений, то здесь можно заметить много общего между современными исследованиями в области гомогенного катализа и их весьма ранними предшественниками. В самом деле, уже в 1782 г. Шееле сформулировал положение о том, что этерификация органических кислот спиртом требует присутствия лишь незначительных количеств минеральных кислот, а гидролиз эфиров происходит посредством таких же количеств щелочей. Но еще более четко определена роль агента Клеманом и Дезормом в 1793—1806 гг. Выдвинутая ими теория процесса получения серной кислоты в какой-то степени может рассматриваться как начало современного учения о катализе. Но получился интересный исторический парадокс. Когда в 30-х годах появились обобщения по катализу, Берцелиус не назвал работ Клемана и Дезорма в числе первых каталитических исследований. Это случилось вовсе не потому, что они действительно не были таковыми, а по другим. причинам. Явное внестехиометрическое вмешательство азотной кислоты в реакцию окисления сернистого газа просто объяснялось образованием и распадом промежуточных соединений. Вслед за Клеманом и Дезормом Берцелиус обнаружил в системе реакций получения серной кислоты, а равно и в реакциях этерификации проявление знакомых ему химических действий, а не столько необычных сил , ка.кие имели место при реакциях на платине и превращениях сложных продуктов жизнедеятельности растений, например крахмала. [c.15]

    Приготовление фторида одновалентной меди было впервые описано Берцелиусом. Способ получения этого фторида, использованный Берцелиусом,—действие фтористоводородной кислоты на гидрат закиси меди—очень сомнителен. Пуленк [154] провел реакцию между газообразным фтористым водородом и хлоридом закисной меди при температуре красного каления и изучил процесс диссоциации фторида окисной меди в атмосфере того же газа при 1100—1200°. Продуктом обоих этих процессов была рубиново-красная кристаллическая масса с т. ил. 908°. Продукт устойчив в атмосфере сухого воздуха, но мгновенно разлагается водой. Фторид закисной меди нерастворим в спирте и в жидком HF. Он легко восстанавливается водородом. [c.29]

    В 1833 г. появилась адсорбционная теория Фарадея, созданная нм на основании его наблюдений над свойствами платины и сопоставления работ других исследователей. М. Фарадей установил, что платина в любой форме способна соединять водород с кислородом, при условии совершенной чистоты поверхности. Он считал, что в основе каталитических реакций лежат не электрические силы и не таинственная vis o ulta Берцелиуса, а природные свойства газовой упругости, связанные с проявлением сил притяжения, которыми обладают твердые вещества. Если поверхность чиста, т. е. нет загрязнений, уничтожающих силы притяжения, то газы на ней сгущаются. При этом часть молекул реагентов настолько сближается друг с другом, что возбуждается химическое сродство, уничтожаются эластические силы отталкивания и облегчается реакция. Полученные продукты реакции затем испаряются, освобождая поверхность, и процесс повторяется с другими молекулами. [c.91]


    На протяжении эмпирического периода развития (середина XVII—конец XVIII вв.) органическая химия по определению знаменитого шведского химика Й. Берцелиуса была химией растительных и животных веществ . За это время произошло накопление большого фактического материала, но еще не возникло теоретических, обобщающих представлений. Основной причиной, побуждающей к изучению органических веществ, являлась необходимость в их практическом использовании (получение из природных источников красителей, масел, смол, жиров). Известные с древних времен процессы изготовления вина из виноградного сока, хмельного напитка из меда служат примерами использования брожения — одного из микробиологических процессов, которые не потеряли значения и в настоящее время, а получив дальнейшее развитие, составили основу микробиологического производства многих лекарственных веществ и витаминов (антибиотики, витамин С). [c.10]

    Во-лер1ВЫх, реакции классического синтеза, начиная с получения серной кислоты по способу Клемана и Дезорма, рассматривались как строго стехиометрические процессы. Поэтому ранее он й вообще не причислялись к катализу. Реакции же гетерогенного катализа, явно не укладывавшиеся в рамки стехиометрии, были уже Берцелиусом противопоставлены стехиометрическим реакциям и выделены в особую группу процессов. [c.5]

    После создания атомной теории,— пишет Дюма в только что упомянутой статье,— приобретали новое и все большее значение результаты, полученные исходя из этой замечательной концепции они стали основой всех химических исследований, которые требуют определенной точности. Все же самые недавние попытки, относящиеся к абсолютным весам атомов, привели к слишком неясным результатам, чтобы считать такую теорию окончательной... Поэтому я был вынужден провести серию опытов для определения атомного веса большого числа тел через их плотность в газо- образном или парообразном состоянии. В таком случае остается прибегнуть только к одной гипотезе, и в этом отношении все физики согласны между собой. Эта гипотеза состоит в предположении, что во всех упругих флюидах при одних и тех же условиях молекула находятся друг от друга на одинаковых расстояниях, иными словами в одинаковом числе Самый непосредственный результат такой постановки вопроса уже всесторонне -обсуждался Ампером, но, по-видимому, в практической работе химиков, исключая Гей-Люссака, он не учитывался. Этот результат сводится к представлению о молекулах простых газов как о частицах, способных к дальнейшему делению, которое происходит в момент соединения и варьируется в зависимости от характера процесса... В системе, принятой Берцелиусом, образование соединений происходит по общей схеме, которая состоит в том, что их атомы изображаются как бы возникшими в результате сочетания целого числа простых атомов. Так, по этой системе вода состоит из двух атомов водорода и одного атома кислорода, хлористоводородная кислота — из одного атома хлора и одного водорода, тогда как, если следовать упомянутой идее о конституции газов, следовало бы считать воду состоящей из одного атома водорода и половинм атома кислорода, а хлористоводородную кислоту — из половины атома хлора и половины атома водорода. Формула соединения должна бы, таким образом, всегда изображать то, что входит в состав этого тела в газообразном состоянии. Надо признать, что знания, которыми мы обладаем в этом отношении, делают трудным применение этого правила . [c.187]

    Кольбе вновь обратился к теории радикалов Берцелиуса и пытался обосновать ее на основе новых открытий. Он хотел, чтобы теоретические представления отражали свойства реальных веществ. Кольбе трудился упорно, сопоставляя свои- идеи с результатами новых исследований. Очень важными для него оказались работы Франкленда, посвященные исследованию состава и свойств органических соединений азота, фосфора, мышьяка и сурьмы, а также металлоорганических соединений . В работе Об естественной связи между органическими и неорганическими соединениями (1860 г.) Кольбе писал Химические органические тела всегда являются продолжением неорганических соединений и возникают из последних непосредственно путем изумительно простого процесса замещения [82]. Таким образом, Кольбе пытался рассматривать органические соединения как производные неорганических. При этом угольную кислоту ученый считал основным исходным веществом — типом органических кислот. Из нее путем замещения кислорода на водород или алкильный остаток получались спирты, карбоновые кислоты, альдегиды и углеводороды. Многоосновные кислоты, как и многоатомные спирты, Кольбе получал таким образом соответственно из двух или трех молекул угольной кислоты. Подобным же образом как производные неорганических веществ Кольбе рассматривал сульфокислоты, сульфоны, фосфорные и мышьяковые кислоты, амины, амиды и металлоорганические соединения. Пользуясь этой теорией, он пытался не только объяснить известные факты, но и предсказывать новые. Кольбе писал Нам кажется, что подобным же образом и в спиртах происходит замещение одного или двух атомов водорода на равное число метильных, этильных или других замещающих групп и в результате образуется новый ряд спиртов... И хотя до сих пор ни один из этих спиртов еще не получен, все равно я совершенно твердо убежден, что [c.59]

    В микроанализе различают два важных направления в макроанализе аналогичные направления отсутствуют. Первое — это каталитический анализ. Каталитические реакции, например процесс брон ения, известны с древнейших времен, однако истинная природа этого явления была установлена только в начале прошлого столетия в процессе изучения роли кислот в получении эфира ипре-врашепии крахмала в сахар. Автор термина катализ — Берцелиус катализаторами он назвал такие вещества, которые ускоряют химическую реакцию, но сами в ней не участвуют (1836 г.). [c.130]


Смотреть страницы где упоминается термин Берцелиуса процесс получения: [c.176]    [c.132]    [c.49]    [c.820]    [c.49]    [c.13]   
Неорганическая химия Том 2 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Берцелиус



© 2024 chem21.info Реклама на сайте