Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина, свойства

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]


    Осадок диметилглиоксимата никеля обладает весьма ценными для анализа свойствами. Так, он весьма мало растворим в воде (ПР = 2,3-10"25), концентрация Ni + в его насыщенном растворе составляет около 4 10 г-ион/л. Избыток осадителя еще больше понижает эту и без того весьма малую растворимость осадка. Далее, весьма ценно, что осадок получается достаточно чистым. Наконец, реакция довольно специфична. Из других катионов малорастворимые осадки с диметилглиоксимом дают только палладий и платина, которые редко встречаются при обычных анализах. Все это делает диметилглиоксим наиболее ценным осадителем Ni +-ионов. [c.188]

    Влияние условий термообработки носителя и катализатора на нх физико-химические свойства и каталитическую активность. Условия термообработки значительно изменяют физическое и химическое состояние компонентов катализатора, что связано с химическим взаимодействием исходных соединений платины, носителя и промоторов на различных стадиях термообработки. Катализатор изомеризации парафиновых углеводородов должен обладать сильными кислотными свойствами, обеспечивающими высокую скорость протекания реакции изомеризации, в сочетании с гидрирующими свойствами, от которых зависит стабильность его работы в процессе. [c.50]

    Вследствие высокой стоимости платины часто приходится вместо платиновых электродов применять электроды из менее ценных металлов или сплавов. Однако анод всегда делают из платины, так как в процессе электролиза анод из других металлов может растворяться. Следует все же заметить, что найти равноценный платине по свойствам материал для электродов до сих пор не удалось. Электроды из меди сравнительно легко окисляются кислородом воздуха, что сопряжено с изменением их массы и понижением точности определения. [c.422]

    Методы анализа и испытания катализатора ИП-62. В соответствии с требованиями и нормами в катализаторе ИП-62 контролируются массовые доли платины, фтора, железа, натрия кроме того, определяются насыпная плотность, коэффициент прочности, диаметр экструдатов, фракционный состав, массовая доля потерь при прокаливании и катали-, тические свойства активность и селективность в реакции изомеризации н-пентана. [c.76]

    Многие соединения платины, кобальта и других переходных металлов имеют необычные эмпирические формулы и часто ярко окрашены. Они называются координационными соединениями. Их главным отличительным признаком является наличие двух, четырех, пяти, шести, а иногда большего числа химических групп, расположенных геометрически правильно вокруг иона металла. Такими группами могут быть нейтральные молекулы, катионы или анионы. Каждая группа может представлять собой независимую структурную единицу, но нередки и такие случаи, когда все группы связаны в одну длинную, гибкую молекулу, свернувшуюся вокруг атома металла. Координированные группы сушественно изменяют химические свойства металла. Окраска таких соединений позволяет судить об их электронных энергетических уровнях. [c.205]


    Исследования ряда авторов показали, что нанесением никеля, кобальта, палладия и платины на носители, обладающие кислотными свойствами, можно синтезировать катализаторы изомеризации парафиновых углеводородов [36]. В наших исследованиях была изучена реакция изомеризации парафиновых углеводородов на алюмоплатиновых и алюмо-палладиевых катализаторах, промотированных фтором. Было показано, что платиновые катализаторы отличаются большой устойчивостью к действию ядов (сернистых и азотистых соединений) и лучшей регенерационной способностью (табл. 2.6). На основании проведенной работы в качестве металлического компонента катализатора была рекомендована платина. [c.52]

    С соответствующими металлами кобальт, родий и иридий образуют твердые растворы и интерметаллические соединения, что определяет физико-химические и механические свойства их сплавов. Особо широко используются кобальтовые сплавы. Многие из них жаропрочны и жаростойки. Например, сплав виталлиум (65% Со, i8% Сг, 3% Ni и 4% Мо), применяемый для изготовления деталей реактивных двигателей и газовых турбин, сохраняет высокую проч-I ость и практически не подвергается газовой коррозии вплоть до 800—900°С. Имеются также кислотоупорные сплавы, не уступающие платине. Кобальтовые сплавы типа алнико (например, 50% Fe, 24% Со, 14% Ni, 9% А п 3% Си) применяются для изготовления постоянных магнитов. Для изготовления режущего инструмента важное значение имеют так называемые сверхтвердые сплавы, представляющие собой сцементированные кобальтом карбиды вольфрама (сплавы ВК) и титана (сплавы ТК). Большое значение имеет кобальт как легирующая добавка к сталям. [c.596]

    В это же время Штаудингер и Фрич гидрировали каучук в присутствии платиновой черни, в отсутствии растворителя, под давлением 93— 102 ат, при температурах 270—280° в течение 10 час. Никель действует так же, как и платина, но гидрирование идет не столь быстро и полно. Полученный ими гидрокаучук представлял бесцветную, прозрачную, твердую массу он не обладал эластическими свойствами исходного каучука и имел химические свойства насыщенных углеводородов. При пиролизе гидрированного каучука образовались олефины, из которых [c.218]

    Изучение реакции изомеризации гексанов с помощью меченых атомов С позволило определить соотнощение механизмов реакции сдвига связи и циклической изомеризации в зависимости от свойств катализатора. Оценка размеров кристаллитов платины в катализаторе показала, что в случае кристаллитов размером менее 2 нм преобладают циклическая изомеризация и неселективный гидрогенолиз метилциклопентана, в то время как на более крупных кристаллитах преобладают сдвиг связи и селективный гидрогенолиз (рис. 1.6). [c.16]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Введение 0,02—2,5% натрия приводит к снижению изомеризующей и гидрирующей активности катализатора (рис. 2.3). Полученные зависимости свидетельствуют об одинаковом влиянии на состояние платины добавок, противоположным образом влияющих на кислотность катализатора (фтор и натрий), и могут быть объяснены изменением химического состояния платины за счет взаимодействия ее с фтором и натрием, следствием чего является снижение доли металлической платины и изменение ее каталитических и адсорбционных свойств. [c.48]

    Смесь одного объема HNOg и трех объемов НС называют царской водкой. Она растворяет платину, золото и другие неактивные металлы, переводя их в комплексные хлориды (см. с. 616). Нитрат-ион NO3 в нейтральной среде окислительные свойства практически не проявляет [c.357]

    При уменьшении содержания платины на катализаторе (при остальных равных условиях) происходит ухудшение его каталитических свойств. Из-за более малой доступной поверхности платины возрастает скорость коксообразования. При этом снижается то предельное содержание кокса на катализаторе, с которым он сохраняет работоспособность (рис. 4.5). [c.52]

    Как видно из графика, при уменьшении содержания платины на АПК ниже 0,2 % мае. происходит резкое ухудшение его каталитических свойств. [c.52]

    Описано катализируемое соединениями платины присоединение замещенных силанов, имеющих связь 5 —Н, и радикальная прививка непредельных силанов, позволяющие получить реакционноспособные полимеры, отверждаемые, например, на холоду, со-гидролизуемые с галогенсиланами и т. д. [58]. Перспективы получения на основе углеводородных полимеров с силоксановыми боковыми цепями эластомеров с ценными свойствами (тепло- и морозостойкость, сопротивление истиранию и др.) иллюстрируются свойствами уже изученных смесей каучуков общего назначения с небольшими (5—10%) добавками силоксановых полимеров [59, 60]. [c.240]


    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    До Менделеева полагали, что атомная масса платины, Рс, больше, чем у золота, Аи. Но Менделеев придерживался иной точки зрения, основываясь на химических свойствах этих двух металлов и месте, которое он отвел им в своей таблице. Новые измерения, вдохновленные работами Менделеева, показали, что атомные массы составляют 198 для платины и 199 для золота, что заставляло поместить в таблице платину раньше золота и под палладием, Рс1, который более всех других элементов напоминает платину. [c.310]

    Характерной особенностью перечисленных элементов является недостроенность их электронных d-оболочек, определяющая химические и многие физические свойства этих элементов. Для этих элементов характерно, что переход электронов из внещних с -оболочек во внешнюю s-оболочку (или наоборот) приводит к возникновению свободных валентностей. Например, для платины переход из считающегося основным состояния 5 i 6s2 3 состояние 5ii 6s приводит к образованию двух свобод ных валентностей (два неспаренных электрона). [c.363]

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    ЩИХСЯ между силикатными слоями. По этой причине глинистые почвы очень удобны для выращивания растений. Это же свойство позволяет использовать их в качестве носителей для металлических катализаторов. Один из распространенных катализаторов-платиновая чернь - представляет собой тонкоизмельченную металлическую платину, полученную осаждением из раствора. Каталитическая активность платиновой черни усиливается высокоразвитой поверхностью металла. Аналогичный эффект достигается путем осаждения металла-катализатора (N1 или Со) на поверхность глины. Атомы металла покрывают внутренние поверхности силикатных листов, а кристаллическая структура глины предотвращает слипание металла в бесполезную массу. Согласно предположению Дж. Бернала, первые каталитические реакции на ранних стадиях эволюции жизни, еще до появления биологических катализаторов (ферментов), могли протекать на поверхности глинистых минералов. [c.637]

    Углеродные материалы. Графитовые электроды широко применяют в качестве анодов однако электроды нз чистого графита коррозионно менее устойчивы, чем платиновые электроды, поэтому срок их службы офаничен. Графит используют в виде графитированой ткани, что удобно в лабораторных исследованиях, или в виде стеклоуглерода, который во многих электрохимических процессах может заменить платину. Свойства стеклоуглерода зависят в основном от температуры, при которой он был получен [109] стеклоуглерод трудно поддается механической обработке. [c.186]

    Общая характеристика платиновых металлов. Под общим названием платиновых металлов объединяются элементы второй и третьей триад восьмой группы периодической системы рутений, родий, палладий, осмий, иридий и платина. Эти. элементы образуют группу довольно редких метал/ов, по своим свойствам сходных друг с другом, так что разделение их представляет значн-челыше трудности. [c.696]

    V бинарных соединений Pt (IV) кислотные свойства преобладают над основными. При растворении гидроксида платины (IV) Pt02- H20 в кислотах и щелочах образуются комплексы анионного типа например  [c.616]

    Никель, кобальт, платина или палладий придают катализато — рам дегидро —гидрирующие свойства, но они не обладают устойчивостью по отношению к отравляющему действию контактных ядов и не могут быть использованы в отдельности в гидрогениза — I,ионных процессах. [c.208]

    Поляризационные представления оказались полезными для объяснения устойчивости, кислотно-основных и окнслительно-вос-сталовнтельных свойств комплексных соединений, но многие другие их свойства остались необъясненными. Так, с позиций электростатической теории все комплексы с координационным числом 4 должны иметь тетраэдрическое строение, поскольку именно такой конфигурации соответствует наименьшее взаимное отталкивание лигандов. В действительности, как мы уже знаем, некоторые по- добные комплексы, например, образованные платиной(И), построены в форме плоского квадрата. Электростатическая теория не в состоянии объяснить особенности реакционной способности комплексных соединений, их магнитные свойства и окраску. Более точное и полное описание свойств и строения комплексных соеди- нений может быть получено только на основе квантовомеханиче- ских представлений о строении атомов и молекул. [c.594]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    Соморджай и соавт. [236—239] для выяснения механизма каталитических превращений углеводородов на ступенчатых поверхностях платины пытались идентифицировать атомные центры монокристаллов Р1, ответственных за разрыв связей С—С, С—Н и Н—Н. Структура и состав поверхности монокристаллов Р1 были исследованы методами Оже-спектроскопии и дифракции медленных электронов. Полученные результаты сопоставлены с каталитическими свойствами Р1 ь реакциях О—Н-обмена, дегидрирования циклогексана в бензол и гидрогенолиза циклогексана с образованием н-гексана. [c.165]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    Металлический компонент катализатора, обладающий дегидриче-скими свойствами, ускоряет реакции дегидрирования и гидрирования. Он также способствует образованию ароматических углеводородов, частичному удалению промежуточных продуктов реак ц11и, ведущих к коксообразованию. Металлы-промоторы полиметаллических катализаторов, помимо взаимодействия с основным активным компонентом катализатора (платиной), влияют на селективность процесса, взаимодействуя с носителем (окисью алюминия). [c.10]

    Кислотные свойства катализатора определяют его крекирующую и изомеризуюшую активность, а также глубину превращения сырья. Для усиления кислотной функции катализатор, как правило, промо-тируют галогеном, что способствует замедлению реакции крекинга, стабилизует высокую дисперсность платины. В качестве кислотного промотора в состав АП—56 входит фтор, остальные отечественные катализаторы промотированы хлором. [c.10]

    Дороговизна платины предопределила её малое содержание в промышленных катализаторах риформинга и, следовательно, необходимость её эффективного использования. Этому способствовало применение в качестве носителя оксида алюминия, известного как лучший носитель для катализаторов ароматизации. Для придания катализатору необходимой бифункцио-нальности (нужной для всего комплекса реакций) носителю следовало придать кислотные свойства промотированием галоидами (фтором, хлором). [c.3]

    Политетрафторэтилен выпускается в виде пластмассы, назы ваемой тефлоном, или фторопластом. Весьма стоек по отношеник к щелочам и концентрированным кислотам и другим реагентам По химической стойкости превосходит золото и платину. Негорюч, обладает высокими диэлектрическими свойствами. Применяется В [имическом машиностроении, електротехнике. [c.502]

    Леа Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, а 1895 г, окончил Московский университет. В 1904 — 1908 г. — профессор Московского высшего технического училища, в 1908 —1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изуче нием химии комплексных соединений переходных металлов, в особенности метал- лов платиновой группы Открыл много новых комплексных соединений, важных в теоретической и практическом отношениях. Чугаев впервые обратил внимание иа особую устойчивость 5- и 6-члениых циклов во внутренней сфере комплексных соединеинй и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одннм нз основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов I СССР. Созда./ большую отечественную школу химикоз-неоргаников, работающих а области изучения химии комплексных соединений, [c.588]

    Изомеризацию легких парафиновых углеводородов с целью улучшения их антидетонационных свойств осуществляют в присутствии таких катализаторов, как платина, палладий, сульфид вольфрама и т. д. Процесс изомеризации протекает обычно довольно глубоко. Так, при изомеризации гексановой фракции, содержащей 50% н-гек-сана и 10% диметилбутана, получен продукт, состоящий из 50% диметилбутана и 10% н-гексана [49]. [c.21]

    Термометры сопротивления применяют для измерения температуры в пределах от —200 до -(-500° С. Наиболее подходящим материалом для термометров сопротивления является платина она выдерживает высокие температуры без каких-либо изменений своих свойств, не окпсляется и имеет достаточно большой температурный коэффициент. [c.142]

    В табл. 48 сопоставлены каталитические свойства некоторых нанесенных катализаторов при изомеризации бутена-1. Процесс вели при 450 °С и объемной скорости 200 ч . В исходном газе содержалось 86,3% бутена-1, 8,2% цис-бутена-2 и 5,5% транс-бутена-2. Видно, что во всех случаях сохраняется активность носителя в реакциях структурной изомеризации отношение бутены-2 бутен-1 близко к термодинамически равновесному, равному 2,5. Низка и селективность образования стереоизомеров как правило, отношение цис-1транс- мало отличается от равновесного (0,63). Вместе с тем катализаторы, содержащие железо, платину, родий и особенно палладий, эффективны и в скелетной изомеризации [38]. Относительно родиевых и палладиевых катализаторов следует, однако, отметить, что в отсутствие водорода они -быстро дезактивируются. [c.157]


Смотреть страницы где упоминается термин Платина, свойства: [c.427]    [c.428]    [c.343]    [c.17]    [c.72]    [c.55]    [c.490]    [c.592]    [c.605]    [c.694]    [c.53]   
Химия (1986) -- [ c.376 ]

Химия (1979) -- [ c.391 ]




ПОИСК





Смотрите так же термины и статьи:

Грубе, Рейнгард Об электрохимических свойствах платины

Грубе, Рейнгард Об электрохимических свойствах платины в солянокислом растворе

Кислотные свойства комплексных соединений двухвалентной платины с гидроксиламином и о-метилгидроксиламином

О кислотных свойствах аммиакатов и аминатов четырехвалентной платины

Окислительно-восстановительные свойства комплексных аминатов платины

Платина каталитические свойства

Платина на носителях каталитические свойства

Платина на носителях магнитные свойства

Платина пемза, каталитические свойства

Платина получение и свойства

Платина физические свойства

Платина химические свойства

Платина электрохимические свойства

Платина, адсорбция газов свойства пленок

Платина, окись каталитические свойства

Свойства платины и металлов платиновой группы

Свойства термопар, составленных из различных металлических проводников и химически чистой платины

Физические и химические свойства —Отделение платины от других платиноидов



© 2025 chem21.info Реклама на сайте