Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая Органическим веществам

    Перспективы развития добычи и переработки нефти и газообразного топлива в нашей стране огромны. Это объясняется тем, что нефть и газы по условиям добычи и применения имеют преимущества перед твердым топливом. Нефть и газы успешно транспортируются по трубам на далекие расстояния как внутри нашей страны, так и в дружественные нам страны — Польшу, ГДР, Чехословакию и др. Для химической промышленности нефтепродукты, природные и попутные газы являются дешевым сырьем для получения разнообразнейших химических органических веществ (пластмасс, волокон, каучуков, спиртов, кислот и т. д.). [c.193]


    Возникновение из атомов крупных биологических молекул с твердой поверхностной пленкой воды сразу же как бы резко увеличивает концентрацию химического органического вещества, т.к. молекулы стремятся держаться друг от друга на большем расстоянии. Т.е. органическое вещество нри своем образовании в виде биологических молекул и клеток с силой увеличивает свой объем и концентрацию при фактически том же количестве вещества в виде отдельных атомов. [c.444]

    Главные положения теории строения высказал А. М. Бутлеров в докладе О химическом строении вещества , сделанном 9 сентября 1861 г. на съезде немецких естествоиспытателей и врачей. Бутлеровым были сформулированы правила, которыми можно было руководствоваться при определении строения органических соединений, а также было объяснено явление изомерии, А. Кекуле в 1865 г. распространил положения теории строения на ароматические соединения. Экспериментальное подтверждение теории химического строения Бутлеровым и его учениками имело огромное значение для ее утверждения.— Прим. ред. [c.82]

    А вскоре химики получали в лаборатории уже много других органических веществ из неорганических. Разделение химических веществ на два класса утратило свой первоначальный смысл. [c.11]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]


    Общая химическая технология органических веществ.—М.. 1966,—С, 68—119. [c.295]

    С. Н. Обрядчиков [2] делает попытку по химическому составу нефтей и по константам равновесия отдельных реакций превращения углеводородов определить порядковое значение температур, при которых происходило превращение исходного органического вещества в нефть. [c.163]

    Для лучшего усвоения теории химического строения я нашел необходимым ввести в свой курс Общей химии , основные представления химического строения органических веществ. Все выработанное в этой области несомненно должно быть достоянием химии вообще. [c.3]

    Химические процессы, происходящие под действием ионизирующих излучений, изучает радиационная химия. В настоящее время радиационно-химические реакции широко используются для синтеза высокомолекулярных органических веществ и для изменения их структуры. По мере освоения атомной энергетики радиационная химия все шире проникает в химическую промышленность. [c.203]

    Нефтепродукты и химические органические продукты (далее— вещества) по пожаровзрывоопасности подразделяются на газы — вещества, абсолютное давление паров которых при 50 °С равно или выше 300 кПа или критическая температура ниже 50 °С жидкости — вещества с температурой плавления (капле-падении) не более 50Х твердые вещества —с температурой плавления (каплепадения), превышающей 50°С пыли — диспергированные твердые вещества с размером частиц менее 850 мкм. Указанным ГОСТом установлены следующие показатели пожаровзрывоопасности. [c.9]

    Температура воспламенения — температура горючего вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение. Температуру воспламенения используют при установлении степени горючести веществ, оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой веществ, и определяют для жидких нефтепродуктов и химических органических продуктов по ГОСТ 12.1.021—80, масел и темных нефтепродуктов — по ГОСТ 4333—48. [c.11]

    Нефтедобывающая, нефтеперерабатывающая и нефтехимическая промышленности являются источниками таких загрязнений, как углеводороды, кислые примеси, твердые частицы химическая промышленность — пыли от неорганических производств, органических веществ, сероуглерода, хлористых соединений и др. [c.14]

    Четкая классификация промышленных стоков затруднена из-за разнообразия загрязнений в них. На химических предприятиях стоки даже одинаковых цехов нередко отличаются по составу. В соответствии с одной из классификаций выделяют две основные группы сточных вод содержащие органические вещества содержащие неорганические примеси. [c.74]

    Производства органических веществ из углеводородов нефти и газа (нефтехимическая и химическая промышленность) и производства топлив, масел, углеводородного сырья химических процессов (нефтеперерабатывающая промышленность) относятся к водоемким. Большую часть воды расходуют для охлаждения и конденсации продуктовых потоков. В значительной части технологических процессов воду используют как растворитель или вводят в виде пара. Воду применяют и как реагент химических реакций. [c.80]

    Активный ил представляет собой сложный комплекс микроорганизмов различных классов, простейших микроскопических червей, водорослей. Количественное и качественное формирование этой экосистемы диктуется искусственными условиями существования. Гетеротрофные микроорганизмы способны усваивать углерод из готовых органических соединений различной химической структуры. Но разные группы микроорганизмов адаптировались к использованию углерода из определенного числа этих соединений. Существенное значение при использовании органических веществ микроорганизмами в качестве источников углерода имеет их строение. Насыщенные соединения — биологически стойкие и могут усваиваться только некоторыми видами микроорганизмов. Ненасыщенные органические соединения— хороший источник углерода для многих микроорганизмов. [c.99]

    Загрязненность почвы органическими веществами, в частности отходами производств химических продуктов из углеводородов нефти и газа, оценивают по комплексному показателю санитарное число , представляющему собой отношение количеств почвенного белкового и органического азота  [c.113]

    Производства органических веществ из нефтегазового сырья развивались в основном по пути создания крупных нефтехимических и химических комплексов. В их состав включали крупнотоннажные производства мономеров (олефинов, диенов, арома- [c.151]

    Химические реагенты, применяемые для обработки буровых растворов, в зависимости от степени загрязнения сточных вод органическими веществами условно разделяют на три основные группы  [c.196]


    Однако при высоких давлениях озона эти смеси могут взрываться. Хотя с химической точки зрения эти реакции просты, они трудны для изучения, так как чрезвычайно чувствительны к катализу металлами, окисями металлов и следами примесей, таких, как органические вещества, перекиси или окислы азота. Последние две примеси практически трудно отделить, если кислород, подвергающийся озонированию, содержит следы N2 и Н2О. [c.347]

    Физико-химические свойства веществ, как известно, определяют выбор методов исследования и влияют на величину ПДК они важны и при разработке методов очистки газовых выбросов и сточных вод. Поэтому контролируемые показатели сгруппированы отдельно для неорганических и для органических соединений, как это принято в химических справочниках. Всего охвачено примерно [c.7]

    В кислородном цехе химического комбината произошел взрыв в хвостовой части сливного коллектора. Причина взрыва — скопление в коллекторе органических примесей и подсос загрязненного воздуха через камеры забора воздуха. При перекрытии вентиля на выходе газообразного кислорода из межтрубного пространства колонны технического кислорода повысилось давление. При открывании вентиля для слива жидкого кислорода из конденсатора дополнительной колонны часть кислорода попала на органические вещества, осевшие в коллекторе. Анализ проб на содержание аце- [c.124]

    Некоторые продукты, такие, как лаковые красители, в сухом виде способны самовозгораться при температуре около 100 °С вследствие самоокисления. Эти продукты могут самовоспламеняться при контакте с воздухом (при открытой их выгрузке из сушиЛок в нагретом состоянии). Взрыву пыли органических материалов могут способствовать газообразные продукты, выделяющиеся при перегреве или передержке в зоне высоких температур высушиваемых материалов. В то же время повышение температуры сушки в значительной мере позволяет ускорить процесс сушки, сделать его более экономичным. Однако при решении вопросов интенсификации сушильных процессов не следует увеличивать температуру сушки до близкой к температуре плавления, возгонки и тем более теплового разложения высушиваемого материала. Поэтому предельную температуру сушки выбирают в каждом конкретном случае в зависимости от стойкости материала к нагреванию. Однако предельная температура сушки зависит не только от физико-химических свойств веществ. [c.149]

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]

    Отходы химической обработки. Отходы химической обработки, как, например, отработанный водный раствор едкого натра или отработанный водный раствор кислоты, содержат в растворенном виде углеводороды и органические соединения. В некоторых случаях эти вещества являются вредными и их нельзя спускать в природные водоемы. При перегонке с водяным паром большую часть этих органических веществ можно отогнать, а оставшийся водный раствор спустить в водоемы. [c.129]

    Замазки арзамит. Замазки арзамит представляют собой химически стойкие самозатвердевающие материалы органического происхождения. В состав этих замазок входят искусственная смола (фенолформальдегидная), вводимая в виде раствора (ар-замит-раствор), порошкообразные наполнители (графит, кремнезем, сернокислый барий и др.) и катализаторы-добавки, ускоряющие твердение замазок. В качестве катализатора чаще всего применяют химическое органическое вещество — паратолуолсуль-фохлорид. Наполнители и добавки составляют арзамит-порошок. [c.77]

    В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования жизненной силы , то синтез уксусной кислоты Кольбе позволил решить этот вопрос. [c.71]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Подобных же отклонений от ПНПСР следует ожидать и в других случаях. Например, при протекании реакций электровосстановления или электроокисления, когда изменение кинетики частных реакций может быть обусловлено не только химическим взаимодействием их продуктов, но и иными причинами. Так, если восстанавливаемое соединение или продукт его восстановления способны адсорбироваться на электроде, то перепапряжение водорода может существенно измениться по сравнению с чистым раствором (не содержащим органического вещества) при той же плотности тока (или неизменная величина потенциала электрода будет соответствовать разным значениям плотности тока). Тем не менее и здесь оба принципа — ПНПСР и ПСПК — оказываются полезными, так как позволяют получать дополнительные сведения о процессе протекания совмещенных реакций. [c.389]

    А, В. Фрост [1], основываясь на количественном соотношении циклогексана -и метидццклолсптана в нефтя.х, определил приближенно ту температуру, при которой в природе происходит процесс преобразования нефти. С. И. Обрядчиков 12] делает попытку определить ио химическому составу нефтей и по константам равновесия отдельных реакций превра-шения углеводородов порядковое значение температур, при которых происходило превращение исходного органического вещества в нефть. [c.146]

    Фотосинтез — единственный из всех типов химических реакций (терм ических, каталитических, ферментативных, радиационных и фо— тохимических), позволяющий при мягких термобарических параметрах б o фepы осуществить невероятную, с точки зрения термодинамики химическую реакцию, протекающую с увеличением свободной энергии. Он обеспечивает прямо или косвенно доступной химической энергией все земные организмы и, как будет показано ниже, является источником образования горючих ископаемых. Обратный фотосинтезу процесс представляет собой знакомую всем нам химическую реак1,,ию горения твердых, жидких и газообразных горючих ископаемых с выделением большого количества энергии. Следовательно, растительный и животный мир, а также органические горючие ископаемые Земли есть не что иное как аккумулированная энергия Солнца На современном этапе эволюции Земли ежегодно в результате фотосинтеза образуется 150 млрд. т органического вещества, усваивается 300 млрд. т СО и выделяется около 200 млрд. т свободног о кислорода. Благодаря только фотосинтезу в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической деятельности. При гибели организма происходит обратный процесс [c.43]

    Групповой химический состав растений. Все живые организ — мы состоят в основном из следующих четырех классов органических веществ углеводов, липидов, белков и лигнина. [c.47]

    Расчеты показали, что в осадочных породах континентов и на дне океанов в составе органического вещества содержится порядка 10 т рассеянных углеводородов (микронефти), что более чем в 100 раз превышает все открытые и прогнозные мировые запасы мак — ронефти, газа и углей. Кроме того, огромное количество рассеянной нефти содержится в растворенном состоянии в подземных водах — постоянных ее попутчиках. Отсюда следует вывод о том, что только незначительная часть — менее 1 % рассеянной нефти — добирается до "финиша" и образует месторождения, представляющие промышленное значение. Наличие керогена в осадочных породах можно рассматривать как аргумент, свидетельствующий о существовании рассеянных углей в количествах, во много раз превышающих их запасы в крупных месторождениях. К сожалению, рассеянные угли, в отличие от нефти и газа, не могут мигрировать по пластам и накапливаться в подземных резервуарах. Этот же факт можно рассматривать также как аргумент в пользу совместного образования каустобиолитов на ранних химических стадиях пре — пращений исходного материнского органического вещества. [c.54]

    Химические методы обработки поверхности включаю обезжиривание, травление, а гакже применение модификаторов ржавчины. Обезжириванием называют процесс растворения или эмульгирования жира и масел с помощью химически активных веществ. Осуществляется промывкой деталей в щелочных растворах, органических растворителях, водных моющих средствах [ 7 ]. а в неко-горых случаях электрическим травлением в гагшванических ваннах. [c.91]

    Для нормального протекания процесса самоочищения прежде всего необходимо наличие в водоеме после спуска в него сточных вод запаса растворенного кислорода. Химическое или бактериальное окпслсние органических веществ, содержащихся в сточных водах, приводит к снижению концентрации растворенного в воде кислорода (в 1 л воды содержится всего 8—9 мл растворенного кислорода, в 1 л воздуха — 210 мл кислорода). Влияние дезоксигенизирующих (снижающих содержание кислорода) агентов выражается в замене нормальной флоры и фауны водоема примитивной, приспособленной к существованию в анаэробных условиях. Органические вещества, взаимодействуя с растворенным кислородом, окисляются до углекислого газа и воды, потребляя различное количество кислорода. Поэтому введен обобщенный показатель, позволяющий оценить суммарное количество загрязнений в воде по поглощению кислорода. [c.76]

    Таким показателем является биохимическое потребление кислорода (ВПК), равное количеству кислорода, поглощаемого при окислеиии конкретного вещества в определенный отрезок времени. ВПК выражается в миллиграммах потребного кислорода на 1 г окисляемого вещества (мг Ог/г), а в растворах — в миллиграммах потребного кислорода на 1 л раствора (мг Оа/л). Наряду с ВПК установлен показатель химического Сбихроматного) потребления кислорода (ХПК). Эти показатели для некоторых органических веществ приведены в табл. 9. [c.76]

    Адсорбционная очистка. Этот метод используют для локальной очистки сточных вод от токсичных биологически жестких органпческ1ьх веществ, т. е. трудно поддающихся бактериальной атаке. Этот метод также применяют при так называемой независимой технологии (от биохимической) физико-химической очистки, у дсорбционный метод обеспечивает глубокую очистку вод замкнутого водопотребления и доочистку сточных вод от органических веществ. Перед адсорбционной очисткой сточные воды предварительно обрабатывают на установках реагентной напорной флотации или фильтрации, т. е. адсорбционная установка должна находиться в конце технологической схемы очистки сточных вод. [c.96]

    Химическую инженерную науку целесообразно рассматривать в трех аспектах. С одной стороны, можно проанализироватъ путь превращения сырья в готовый продукт, что является предметом изучения химической технологии. И в этом смысле химическая технология является общей теорией способов химического производства. С другой стороны, можно проанализировать работу типовых машин и аппаратов, которые используются в различных химических производствах. Кроме того, можно рассмотреть химическое производство с экономической и социальной точек зрения. Другими словами, химическая технология, химическая аппаратура и экономика химической промышленности совместно характеризуют любое производство химической промышленности и для успешного решения конкретных задач необходимо сложение усилий различных специалистов. Например, в настоящее время во многих странах актуальным вопросом является организация производства полиэтилена. Предположим, что с этим вопросом столкнулись два технолога различных специальностей. Специальность одного — технология органических веществ, другого — технология полимерных материалов. Задачей специалиста в области технологии органических веществ является выбор из всех возможных технологических методов только одного метода, наиболее соответствующего заданным условиям. Задачей технолога по полимерным материалам является нахождение наиболее подходящего способа полимеризации этилена. Обе задачи непосредственно касаются специалиста по химической аппаратуре, который для выбранной технологической схемы должен рассчитать аппараты, машины и вспомогательное оборудование. Технологи и механики при решении своих вопросов не должны оставлять без внимания соображения экономического характера. Экономист рассматривает всю [c.9]

    Реакциями сульфирования называют химические процессы, в результате которых в молекулу органического вещества вводится сульфокислотная группа (—ЗОаОН) или ее производные (—50гС1, —ЗОаЫа). Наиболее изученными и распространенными являются процессы сульфирования ароматических соединений  [c.109]

    Свойства и происхождение балхашита могут служить доказательством того, что нерастворимые твердые вещества в горючих сланцах могли также первоначально представлять собой твердые полимеры жирных веществ или жирных кислот. Эта точка зрения подтверждается тем, что хорошо известные сланцы месторождений Грин Ривер в Колорадо, а также Вайоминга и Юта содержат относительно большое количество полутора- и бикарбоната натрия, находящегося в сланцах в виде включений белой кристаллической массы. (В одном из районов эти сланцы используются в промышленном масштабе для производства соды). Как будет показано дальше, существуют доказательства того, что конверсия тяжелых остаточных продуктов в нефть, содержащую легкие фракции, и большое разнообразие углеводородов обусловлены реакцией иона карбония, индуцируемой кислыми алюмосиликатными катализаторами, находящимися в контакте с нефтью. Кокс, Уивер, Хенсон и Хенна считают [16], что в присутствии щелочи катализ не осуществляется. В связи с этим возможно, что сохранение твердого органического вещества в битуминозных сланцах месторождения Грин Ривер и других залежах обусловлено присутствием щелочей. Предполагают, что сланцы месторождений Грин Ривер откладывались в солоноватых внутренних озерах в условиях, напоминающих условия образования современного балхашита [6]. Поэтому можно считать, что ненасыщенные растительные и животные жиры и масла представляли собой первичный исходный материал как для нефти, так и для так называемого керогена битуминозных горючих сланцев, образующих первоначально твердое заполимеризовавшееся вещество., Однако в сланцах, содержащих щелочь, НС наблюдалось медленного химического изменения, приводящего к образованию нефти [13а]. Природа минеральных компонентов битуминозных сланцев также может способствовать сохранению органического вещества и препятствовать его провращевию в нефть. Битуминозные сланцы месторождения Грин Ривер в большинстве своем содержат магнезиальный мергель. [c.83]


Смотреть страницы где упоминается термин Химическая Органическим веществам: [c.69]    [c.452]    [c.43]    [c.53]    [c.55]    [c.76]    [c.202]    [c.81]    [c.93]   
Полиэфирные волокна (1976) -- [ c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Введение. Теория химического строения Бутлерова и классификация органических веществ

Венков Органические красящие вещества и химические основы

Влияние физико-химических и гидродинамических факторов на скорость биохимического окисления органических веществ

КОНЦЕНТРАЦИЯ МЕТАЛЛОВ ОРГАНИЧЕСКИМ ВЕЩЕСТВОМ ОСАДОЧНЫХ ПОРОД Значение органического вещества в миграции и концентрации химических элементов

МЕХАНИЗМ, КИНЕТИКА И КАТАЛИЗ ОРГАНИЧЕСКИХ РЕАКЦИИ Химические реакции и вещества, участвующие в них

Общие представления о строении органических веществ ТГИ как о смеси высокомолекулярных соединений. Типы химических связей в природных углеродистых соединениях

Органические вещества соединения природа химической связи

Получение органических пленок в результате химической перестройки вещества под действием тлеющего разряда, электронной бомбардировки или облучения

Применение молекулярной рефракции и дисперсии для установления строения химических соединений Аддитивность молекулярной рефракции органических веществ

Применение химических методов анализа в производстве органических веществ и нефтепродуктов

Применение экстракции в химической технологии органических веществ

Примерные расчеты Физико-химические свойства некоторых органических веществ

Производство органических веществ Химическая переработка топлива

Физико-химические свойства некоторых органических веществ

Физико-химический анализ систем из органических веществ

Физические и физико-химические методы исследования Быстрый масс-спектрометрический метод изотопного анализа, кислорода органических веществ. —И. П. Граверов

Химическая переработка топлива Введение. Горючие вещества органического происхождения

Химическая природа поверхности углеродных адсорбентов и ее значение для молекулярной адсорбции органических веществ из водных растворов

Химическая технология органических веществ

Химическая технология органических веществ Основной органический синтез

Химические методы анализа органических веществ

Химические свойства серной кислоты. Действие на ме- I таллы. Действие на соли. Действие на органические вещества. При

Химический ое не ная химическая вещества

Химический состав и молекулярная структура органического вещества на отдельных стадиях процесса карбонизации нефтяного сы

Химический состав органического вещества пресноводных и морских осадков

Химическое взаимодействие при экстракции органических веществ

Химическое воздействие нефти и других органических веществ на минеральную среду



© 2025 chem21.info Реклама на сайте