Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взрыв пределы концентрационные

    Нижний концентрационный предел взрываемости— это наименьшая концентрация газов или паров горючих жидкостей в воздухе, при которой происходит взрыв смеси от соприкосновения с огнем или искрой. [c.26]

    Основными параметрами, характеризующими взрывоопасность среды, являются температура вспышки, область воспламенения (температурные и концентрационные пределы — пределы взрываемости), температура самовоспламенения, нормальная скорость распространения пламени, минимальное взрывоопасное содержание кислорода (окислителя), склонность к взрыву и детонации, минимальная энергия зажигания и чувствительность к механическому воздействию (удару и трению). [c.20]


    В закрытой комнате объемом 100 м пролили 100 мл ацетона СН3СОСН3. Рассчитайте концентрацию и давление пара ацетона в комнате после его полного испарения. Плотность жидкого ацетона при 20° С равна 0,79 г/см . При вдыхании ацетона он накапливается в организме и выводится очень медленно. ПДК ацетона (предельно допустимая концентрация) равна 200 мг/м . Будет ли в помещении достигаться ПДК Смесь паров ацетона и воздуха крайне пожаро- и взрывоопасна. КВП (концентрационные пределы воспламенения) ацетона равны 2,15—13,00%. Следует ли опасаться пожара или взрыва в комнате, где разлили ацетон  [c.20]

    Значения стандартных взрыво- и пожароопасных параметров веществ, указанных в СНиП М.2-72 (табл. 1), принимают по рекомендациям ВНИИПО. Показатели пожарной опасности веществ и материалов приводятся в справочниках Пожарная опасность веществ и материалов , под редакцией И. В. Рябова (Стройиздат), ч. I, 1966 ч. И, 1970 Пожарная опасность веществ и материалов, применяемых в химической промышленности ( Химия , 1970). ГТри отсутствии данных в справочниках и рекомендациях ВНИИПО пользуются значениями стандартных взрыво- и пожароопасных параметров, найденными по методикам, изложенным в действующих ГОСТах и инструкциях ВНИИПО. Концентрационные пределы воспламенения, при отсутствии рекомендаций ВНИИПО и справочных данных, рассчитывают в соответствии с методикой ВНИИПО № 12-р-72. [c.358]

    Во-вторых, необходимо отличать пределы взрыва, наблюдаемые как концентрационные пределы, имеющие цепную природу, только что рассмотренные нами, В этом случае отмечаются два предела самовоспламенения [c.216]

    Пыли порофора способны образовывать взрывоопасную смесь с очень низким концентрационным пределом взрываемости. В то же время порофоры способны к тепловому самовозгоранию и взрыву при сравнительно низких температурах. В определенных условиях это может вызвать взрыв в аппаратуре и серьезные аварии в помещении с высокой запыленностью этим продуктом. [c.150]

    Смесь паров горючего и воздуха становится взрывчатой только при определенном содержании в ней горючего. Если в газовой смеси горючего очень мало по сравнению с количеством воздуха, такая смесь не взорвется, так как все тепло, выделяющееся в т,очке зажигания, охладится окружающим воздухом и вносимого тепла бу дет недостаточно для воспламенения других частиц горючего. Смесь также не взорвется, если содержание воздуха в ней мало, так как будет недостаточно кислорода для поддержания процесса горения. Наименьшая концентрация паров горючего в воздухе, при которой уже возможен взрыв, называется нижним концентрационным пределом воспламенения (взрываемости), а наибольшая концентрация паров в воздухе, при которой еще возможен взрыв, называется верхним концентрационным пределом воспламенения (взрываемости). Проза [c.32]


    Азотоводородная смесь и аммиак могут образовывать взрывоопасные смеси при определенных соотношениях с воздухом. Под влиянием ряда факторов концентрационные пределы взрываемости газовых смесей могут расширяться. Так, при 100°С смесь воздуха и водорода взрывоопасна уже при содержании менее 4% водорода. Повышение давления воздуха и обогащение его кислородом также способствует расширению пределов взрываемости его смесей с горючими газами. Поэтому содержание даже 1 % кислорода в азотоводородной смеси или 0,8—1% водорода в воздухе производственных помещений следует рассматривать как опасное. Согласно рабочим инструкциям, продолжать работу при таких условиях запрещается. Взрывы газовых смесей могут произойти при нагревании до температуры, превышающей температуру их воспламенения или детонации. При авариях и неисправностях оборудования возможно попадание значительных количеств газа в воздух производственных помещений и образование взрывоопасных смесей. В связи с этим должны быть приняты меры, предотвращающие контакт газов с источниками воспламенения (искры, открытый огонь, оборудование, нагретое до высоких температур, и др.). [c.68]

    В-третьих, в технической литературе под верхним и нижним пределами взрыва подразумевают предельные концентрации прн наличии импульса извне. Очевидно, что вне концентрационных пределов при постороннем источнике воспламенения взрыв не сможет распространяться по смеси, находящейся при заданных давлении и температуре. Когда же взрыв может произойти, то возникновение его в одной из точек не будет еще означать возможность распространения его по всему объему. Существенную роль при этом -будут играть условия распространения пламени. Взрыв при этом возникает в ограниченном пространстве, в котором находится источник, вызывающий зажигание (искра, нагретая проволочка). Следовательно, в этом ограниченном пространстве оказываются соблюденными все условия (концентрация, давление и температура), при которых возможен цепной взрыв. Но во всем остальном пространстве температура ниже, чем это необходимо для осуществления цепного взрыва, поэтому реакции не идут. Они могут начаться в результате распространения пламени от места зажигания благодаря теплопередаче от горящего слоя к граничащему с ним не горящему слою и благодаря возрастанию давления, вызванному горением. Вследствие повышения температуры и происходит самовоспламенение слоя, граничащего со слоем горящего газа. [c.217]

    Зная нижний концентрационный предел взрываемости данной пыли, по полученным расчетным данным можно определить возможность взрыва в помещении. [c.274]

    Все перечисленные выше параметры взаимосвязаны и характеризуют чувствительность горючих веществ в смеси с окислителями к различным энергетическим импульсам воспламенения и вероятность загораний и взрывов в атмосфере или закрытой аппаратуре. Эти показатели имеют важное значение для прогнозирования возможных аварий на каждом техническом уровне взрывобезопасности производств, что подтверждается многолетним опытом. Например, аммиак (концентрационные пределы воспламенения 15—28% об., минимальная энергия зажигания 680 мДж) по объему производства, количеству объектов и процессов по его переработке на несколько порядков превосходит ацетилен. Однако число случаев воспламенения и взрыва ацетилена (концентрационные пределы воспламенения [c.21]

    Наименьшая концентрация паров нефтепродукта (или иного вещества) в воздухе, при которой уже возможен взрыв, называется нижним концентрационным пределом взрываемости, а наибольшая концентрация паров в воздухе, при которой еще возможен взрыв, — верхним концентрационным пределом взрываемости. Область концентрации между этими пределами, в которой от источника открытого огня (искры) происходит взрыв, называется областью (диапазоном) взрываемости. [c.26]

    В качестве основных показателей пожаро- и взрывоопасности используют температуру вспышки и воспламенения паров твердых веществ и жидкостей в воздухе. Термином вспышка обозначают явление быстрого сгорания смеси горючих паров и воздуха по месту зажигания, не сопровождающееся распространением пламени по всему объему. За температуру вспышки принимают самую низкую температуру твердого или жидкого вещества, при которой над его поверхностью образуется достаточное для вспышки от источника зажигания количество пара. Выделяющейся при этом энергии в области зажигания не хватает для прогрева близлежащей зоны до температуры воспламенения, поэтому пламя не распространяется по всему объему. За температуру воспламенения принимают минимальную температуру твердого или жидкого вещества, при которой над его поверхностью выделяется достаточное для устойчивого горения после удаления источника зажигания количество пара. Таким образом, температура воспламенения компактного вещества связана с достижением над его поверхностью нижнего концентрационного предела воспламенения пара этого вещества. Нижние и верхние концентрационные пределы воспламенения и температура самовоспламенения (см. раздел 1.2.9) служат показателями взрыво- и пожароопасных свойств газообразных и аэродисперсных систем. [c.77]


    Номенклатура показателей дает возможность не только оценивать пожарную опасность жидкостей, но и решать задачи, связанные с обеспечением безопасности. Она включает в себя такие важные показатели, как температуры вспышки и воспламенения, температурные и концентрационные пределы воспламенения, минимальную энергию зажигания, способность взрываться и гореть при взаимодействии с кислородом воздуха, водой и другими веществами, а также минимальное взрывоопасное содержание кислорода, флегматизирующую концентрацию инертного разбавителя, характер взаимодействия горючей жидкости со средствами водопенного тушения и другие факторы. [c.15]

    Пожаро- и взрывоопасность химических продуктов характеризуются температурами вспышки, самовоспламенения паров в воздухе, температурными и концентрационными пределами взрываемости в воздухе (табл. 39). При концентрации вещества выше верхнего предела взрываемости смесь горит без взрыва. [c.248]

    В 1971 г. в Сиракузах (Италия) произошел пожар в резервуарном парке нефтехимического предприятия, вызванный взрывом в резервуаре смеси ацетальдегида с воздухом. Ацетальдегид имеет температуру кипения 20 °С, концентрационные пределы воспламенения смеси его паров с воздухом составляют 4—53% (об.). Воздух попал в резервуар через дыхательный клапан при понижении уровня продукта и выходе из строя системы азотного дыхания. Пожар распространился на два резервуара, содержащие по 3,8 тыс. т жидкого аммиака, два резервуара с ацетальдегидом, емкостью по 500 каждый, пять резервуаров с акрилонитрилом емкостью по 1500 м и др. Пожар продолжался шесть суток, до тех пор, пока не сгорели полностью хранящиеся на складе продукты. Прекратить пожар сразу не удалось, так как вышла из строя арматура. Чтобы предотвратить интоксикацию людей ядовитыми продуктами, пришлось эвакуировать население нз зоны радиусом 3 км. На этом участке было прервано железнодорожное и морское сообщение. Поскольку загрязненная вода, использованная для охлаждения резервуаров, стекала в море, погибло большое ко.чиче-ство рыбы. [c.170]

    Взрывоопасные аэродисперсные системы могут возникнуть спонтанно, например при встряхивании отложений пыли. Они имеют весьма широкие концентрационные пределы воспламенения от десятков граммов до килограммов на кубометр воздуха. В замкнутом объеме технологического аппарата начавшееся горение и распространение пламени в аэровзвеси приводит к быстро нарастающему повышению давления, что может привести к разрыву аппарата, а затем к взрыву в окружающих помещениях. Поэтому проблема предотвращения и подавления взрывов пылевоздушных смесей в технологическом оборудовании и производственных зданиях является весьма актуальной. [c.261]

    Во многих случаях в процесс вводят добавки, снижающие опасность взрыва не участвующих в реакции продуктов. Например, при проведении окислительных процессов в реакционных аппаратах находятся одновременно горючие продукты и окислители (кислород, хлор и др.), причем реакция часто проходит при высоких температурах, близких к температуре воспламенения реагирующих веществ или даже ее превышающих. В этих случаях необходимо, чтобы концентрации горючих веществ в смеси с окислителем были меньше нижнего или выше верхнего концентрационного предела воспламенения. При нарушении безопасного соотношения между горючим веществом и окислителем возможен взрыв. Для его предотвращения в реакционную среду вводят флегматизаторы. Применяют активные (ингибиторы) и инертные (пассивные) флегматизаторы. [c.44]

    Большая часть применяемых в промышленности непредельных углеводородов и их производных имеет весьма широкие концентрационные пределы воспламенения, очень низкую минимальную энергию воспламеняемости их смесей с воздухом. Поэтому при аварийных утечках мономеров весьма часты случаи их взрывов в воздухе рабочих помещений на открытых установках. [c.338]

    Концентрационные пределы воспламеняемости зависят от внешних условий диаметра трубы, направления распространения пламени, температуры, давления и других [159], однако в литературе нет определенных J численных характеристик влияния указанных факторов g на пределы воспламеняемости компрессорных смазок. -Большое значение имеют конструктивные особенности пневмосистемы. Теоретический расчет, учитывающий, что все вводимое в компрессор смазочное масло равномерно распределено в сжатом воздухе, показывает невозможность образования взрывоопасных концентраций на таких хорошо вентилируемых участках, как цилиндры, не только при полной загрузке компрессора [118], но даже и при значительно меньшей [155]. Из всех аварий в воздушных системах ни в одном случае не было взрыва самого компрессора (цилиндров). Взрываются нагнетательные трубопроводы, холодильники, ресиверы. Эти взрывы происходят в результате местных повышений концентраций масла в воздухе. Одним из факторов, способствующих образованию повышенных концентраций, является плохая вентиляция, например наличие застойных зон в сосудах и трубопроводах, глухих мешков, тупиковых отростков, сильно разветвленной и плохо контролируемой системы трубопроводов, отсутствие или нерегулярность продувки [45, 68, 79, 135, 151, [c.12]

    Накопление достаточно высокого заряда статического электричества в топливе может привести к самопроизвольному его разряду и как результат-к взрыву и пожару от возгорания паров топлива. Пожаро- и взрывоопасность реактивных топлив от статического электричества определяется главным образом концентрационными и температурными пределами взрываемости их паров и силой возникающего разряда, которая во многом зависит от конструкции и материала технических средств. [c.166]

    На диаграмме (рис. 2) показаны концентрационные пределы и области воспламенения для паров некоторых веществ и для газов, применяемых или получаемых в химической промышленности. Из диаграммы видно, что пары бензина взрываются от источника зажигания, если [c.33]

    Высокая взрыво- и пожароопасность водорода обусловлена способностью его легко вступать в химическое взаимодействие с окислителями с выделением большого количества тепла. Для инициирования реакций взаимодействия водорода с окислителями в большинстве случаев требуется незначительный тепловой импульс. Так, водород реагирует с кислородом с выделением большого количества тепла (72 250 ккал/кмоль образующейся воды), а энергия воспламенения водорода составляет всего лишь 10% от энергии воспламенения углеводородов [155]. Пределы воспламеняемости водорода соответствуют концентрации его в воздухе от 4 до 75 объемн. % [26, 121, 144, 156], что гораздо шире концентрационных пределов для большинства других горючих в среде чистого кислорода эти пределы еще шире — от 4 до 96 объемн. % [26]. Нижний и верхний пределы детонации смесей водорода с воздухом соответствуют концентрациям его 18,3 и 74 объемн. %, а смесей водо-зода с кислородом—соответственно 15 и 94 объемн. % 121, 168]. [c.176]

    В замкнутом объеме воспламенение носит характер взрыва. Поэтому нижний и верхний предел концентрации паров спирта, при которых их смеси с воздухом при атмосферном давлении воспла ге-няются от постоянного источника зажигания с распространением пламени на весь объем паровоздушной смеси, называют также концентрационными пределами взрываемости паров в воздухе. [c.79]

    Увеличение мощности электрических искр ведет к расширению области воспламенения (взрыва) газовых смесей. Однако и здесь существует своя граница, когда дальнейшее изменение пределов воспламенения не происходит. Искры такой мощности принято называть насыщенными. Использование их в приборах по определению концентрационных и температурных пределов воспламенения, температуры вспышки и других величин дает результаты, не отличающиеся от воспламенения накаленными телами и пламенем. Это говорит о том, что насыщенные электрические искры можно принимать за разновидность высокотемпературных тепло-136 [c.136]

    Расчет нагрузок на фронте взрывной волны при горении облака топливно-воздушной смеси. Наиболее важной характеристикой аварии со взрывами паровых облаков является расстояние от эпицентра, которое может охватывать паровое облако с концентрацией выще нижнего концентрационного предела распространения пламени. Возникновение данного вида опасности в значительной степени определяется расположением источников загорания по территории объекта. Предполагается, что на открытой местности в основном реализуется процесс дефлаграции. Ущерб от дефлаграции оценивается по механизму воздействия ударной волны и горения облака. В случае механизма детонации область ущерба практически совпадает с зоной существования парогазового облака с концентрацией С кир- Границы зоны разрущения характеризуются значениями избыточных давлений по фронту детонационной ударной волны АР и соответственно безразмерным коэффициентом К, определяемым по формуле (2.3) и табл. 2.7. [c.157]

    Взрыво- н пожароопасность. Горючие сыпучие материалы при определенных условиях могут самовозгораться, а в смеси с воздухом — взрываться. Взрыв аэровзвеси сыпучих горючих компонептов происходит только в том случае, если их концентрация в воздухе находится в диапазоне между нижним и верхним пределами воспламенения. Согласно нормам, принятым в СССР, нижний предел воспламенения служит основным критерием взрывоопасности аэровзвесей. Взрывоопасными принято считать пылевоздушные смеси, нижний концентрационный предел воспламенения (НКПВ) которых меньше или равен 65 г/м . Нылевоздушные смеси с НКПВ, превышающим 65 г/м , считают пожароопасными. [c.151]

    Производства, использующие в качестве веществ и материалов жидкости с температурой вспышки паров выше 61 С, пыли или волокна с нижним концентрационным пределом взрываемости более 65 г/м твердые сгораемые вещества и материалы, а также вещества, способные гореть, не взрываясь, при взаимодействии с водой, кислородом и (или) [c.78]

    За нижний концентрационный предел взрываемости принимается минимальная концентрация пыли (в м ), при которой еще происходит взрыв. [c.325]

    Вспышка представляет собой слабый взрыв, который возможен в строго определенных концентрационных пределах в смеси углеводородов с воздухом. Различают верхний и нижний концентрационный предел распространения пламени. Верхний предел характеризуется максимальной концентрацией паров органического вещества в смеси с воздухом, выше которой воспламенение и горение при внесении внешнего источника воспламенения невозможно из-за недостатка кислорода. Нижний предел находится при минимальной концентрации органического вещества в воздухе, ниже которой количество теплоты, выделившееся в месте локального воспламенения, недостаточно для протекания реакции во всем объеме. [c.68]

    От количества горючих материалов в помещении, их теплоты сгорания и скорости горения зависят продолжительность у температурный режим пожара. В настоящее время еще не разработаны методы количественной оценки взрывной и пожарной опасности отдельных производственных процессов, помещений или зданий. Поэтому пользуются сравнительными данными, опреде.ляющими вероятность возникновения и распространения взрыва или пожара, исходя из физико-химиче-С) их свойств веществ, образующихся в производстве. К таким свойствам относят для легковоспламеняющихся и горючих жидкостей — температура вспышки, для горючих газов и пылей — нижний концентрационный предел воспламенения, для твердых веществ — их возгораемость, а также возможность воспламенения или взрыва при взаимодействии с водой или окислителями. [c.396]

    В-третьих, в технической литературе под верхним и нижним пределами взрыва понимают концентрационные пределы при зажигании. Взрыв возникает в ограниченном пространстве от искры, нагретой проволочки и т. д. В этом ограниченном пространстве оказываются соблюденными все условия (концентрация, давление и температура), при которых возможен цепной взрыв. Очевидно, что вне концентрационных пределов при специальном зажигании взрыв не может распространяться по смеси, находящейся при заданном давлении и температуре. Возникновение взрыва в одной из точек еще не означает возможности распространения его по всему объему. Если во всем остальном пространстве температура ниже, чем это необходимо для осуществления-цепного взрыва, реакция не идет. Она может начаться в результате распространения пламени от места зажигания за счет теплопередачи от горящего слоя к граничащему с ним негорящему слою и за счет возрастания давления вследствие реакции горения. В результате повышения температуры и происходит воспламенение граничащих с горящим слоев газа. [c.272]

    Применение агрегата окисления новой конструкции, в котором совмещены смеситель и контактный аппарат, использование минимальных объемов аммиачно-воздушной смеси и оснащение этого узла надежными системами автоматического регулирования и противоаварийной защиты позволяют обеспечить безопасные условия эксплуатации установки в отсутств1ие устройств, сбрасывающих давление при взрыве аммиачно-воздушной смеси. Как показал опыт эксплуатации, взрывные мембраны не всегда обеспечивают защиту аппарата от разрушения при взрыве, что обусловлено несовершенством методов расчета и сложностью их изготовления. Поэтому за рубежом на многих крупных агрегатах, работающих под давлением, предохранительные мембраны не устанавливают. Однако рабочий состав аммиачно-воздушной смеси принимают с относительно низким содержанием аммиака (9,5—10%). что позволяет создать больший запас надежности эксплуатации агрегата по отношению к нижнему концентрационному пределу воспламенения при 200°С (15%). [c.44]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Среди многочисленных характеристик пожаро- и взрывоопасных свойств пылей основное значение имеют такие показатели, как температура воспламенения и самовоспламенения, концентрационные пределы взрыва, скорость распространения фронта пламени, минимальная энергия зажигания, максимальное давление взрыва и скорос/ь нарастания давления. [c.26]

    При увеличении концентрации окиси углерода в смеси выше нижнего концентрационного предела воспламенения получаются смеси, обладающие большей силой взрыва, чем смесь на нижнем пределе. Такие изменения свойств смеси становятся понятными, если учесть, что они содержат большее количество окиси углерода и меньший избыток воздуха, чем предельная смесь и, следовальнс, обладают высокой теплотворной способностью и температурой взрыва. [c.134]

    В отличие от теплового взрыва сгорание всей смесп от местного зажигания возможно только тогда, когда содержание горючего газа в смеси не ниже и пе выше определенного, т. е. находится в концентрационных пределах воспламенения. Вне этих пределов горение или взрыв смеси (т. е. детонационное горение) невозможны. В этом случае при зажигании от раскаленного тела может наблюдаться лишь местное горение непосредственно около запала, не распространяющееся на весь объем смеси. Наличие концентрационных пределов воспламенения газовоздушных смесей процесса теплового зажи- [c.128]

    Вещество Темпе ратура вспыш ки, °с Концентрационные объемные пределы воспламенения, % Горю- честь, воспламе- няемость, взрыво- опасность ПДК мг/м Класс опас- ности Плот- ность газов (паров) по воздуху [c.60]

    Вообще говоря, величины Оу и зависят от класса устойчивости атмосферы по Пасквиллу. Однако влияние класса устойчивости наиболее существенно при малых концентрациях горючего пара (например, в задачах, где изучается токсическое воздействие паров жидкости). При рещении задач об оценке поражающего действия взрыва паровоздушного облака и пожара-вспышки представляют интерес части облака с концентрациями горючего пара выше нижнего концентрационного предела распространения пламени (НКПР), который практически для всех нефтепродуктов составляет около 40 г/м . При столь высоких концентрациях влияние класса устойчивости атмосферы относительно невелико. Выражения для дисперсий (3.65) и (3.66) были получены по известным экспериментальным данным и использованы в описанной выше модели при сравнении с экспериментом, выполненным в совершенно других погодных условиях. Было получено неплохое согласование расчетных и экспериментальных данных. [c.184]

    Промышленные производства по степени взрывопожароопасности разделены на 6 категорий. Производства, использующие вещества и материалы в виде газов с нижним концентрационным пределом взрываемости 10% и менее от объема воздуха в газовоздушной смеси, жидкости с температурой вспышки паров до 28 С включительно, если количества указанных газов и (или) жидкостей достаточно для образования взрвывоопасных смесей в объеме, превышающем 5% объема воздуха в помещении, а также вещества, способные взрываться и (или) гореть при взаимодействии с водой, кислородом воздуха и(или) одно с другим, относят к категории А - взрывопожароопасной. [c.78]


Смотреть страницы где упоминается термин Взрыв пределы концентрационные: [c.23]    [c.273]    [c.151]    [c.238]    [c.103]    [c.8]    [c.134]    [c.178]   
Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв



© 2025 chem21.info Реклама на сайте