Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие с комплексами переходных металлов

    С точки зрения теории МО, основной причиной, определяющей низкую стабильность нестабилизированных а-комплексов переходных металлов, является малая разница в энергиях высшей занятой -орбитали металла и разрыхляющей а -молекулярной орбитали, связывающей металл с углеродом. Поэтому при незначительном возбуждении электронов металла они переходят на а -разрыхляю-щую орбиталь и деформируют комплекс. При координации металла и электронодонорного органического лиганда возникают дативные связи, благодаря которым разность энергий d- и а -орбиталей увеличивается, а, следовательно, возрастает прочность комплекса. Такая координация снижает влияние и второй причины дестабилизации — перехода электронов с а-связывающей на вакантную -орбиталь, которая при взаимодействии с электронодонорным лигандом оказывается заполненной. [c.103]


    Изомеризацию активируют не только хлориды палладия, платины, иридия, родия, рутения, но и их я-комплексы. Высокую каталитическую активность проявляют комплексы и некоторых других переходных металлов (в частности, никеля), а также каталитические системы типа катализаторов Циглера — Натта. Как было отмечено на стр. 98, хлориды переходных металлов при взаимодействии с олефинами образуют л-комплексы. В табл. 32 приведены данные о каталитической активности некоторых комплексов переходных металлов дополнительные сведения имеются в обзорах [25, 26, 45]. Поскольку общее число известных из литературы комплексов, катализирующих изомеризацию, превышает 150, таблицу следует рассматривать только как иллюстративную. [c.114]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]

    Окислительное присоединение - это реакция, в которой пр взаимодействии комплекса переходного металла с реагентом происходит увеличение степени окисления и координационного числа центрального атома на две единицы  [c.550]

    Усоверщенствованная модель ТКП, в которой электростатическое взаимодействие дополнено идеей перекрывания орбиталей, называется теорией поля лигандов (ТПЛ). Она с успехом применяется к большому числу комплексов переходных металлов в обычных степенях окисления, где величины перекрываний электронных облаков не слишком велики. В тех же комплексах, где перекрывание существенно, методы ТКП и ТПЛ непригодны. Для описания подобных комплексов надо пользоваться ММО. [c.169]

    Для пирамидальных нг/до-полиэдров лишь с одной внутренней вершиной необходимо несколько иное рассмотрение, так как собственное значение одновершинного безреберного полного графа равно нулю, что приводит к неопределенным результатам при описанном выше взаимодействии типа б . Эту трудность можно обойти, учитывая, что единственными типами пирамид в химии кластеров с делокализованным связыванием являются квадратные, пентагональные и гексагональные пирамиды для этих типов пирамид могут быть построены схемы связывания, полностью аналогичные общеизвестным схемам для комплексов переходных металлов с циклобутадиеном, с бензолом и для циклопентадиенильных комплексов (см., например, [30]) . При такой аналогии атом внутренней вершины играет роль атома переходного металла и плоский многоугольник из атомов граничных вершин (т. е. основания пирамиды) выполняет роль плоского многоугольного цикла в комплексах металлов. Кроме того, п — 1 радиальных внутренних орбита-лей атомов граничных вершин в результате циклического взаимодействия образуют три орбитали, которые могут быть использованы для связывания с единственным атомом внутренней вершины, что представляется тремя неотрицательными собственными значениями соответствующего графа С , (л = 5, 6 и 7). Из этих трех полигональных орбиталей одна орбиталь — орбиталь Л, — не имеет узловых поверхностей, перпендикулярных плоскости многоугольника, тогда как две остальные орбитали — вырожденные орбитали Е — имеют каждая по одной узловой поверхности, перпендикулярной плоскости многоугольника. Эти две узловые поверхности вырожденных -орбиталей взаимно перпендикулярны, как схематично показано ниже  [c.131]


    Эффективность этих катализаторов зависит от следующих факторов характера связи металл—лиганд вида связи металл—субстрат (иногда лиганд—субстрат) электростатического взаимодействия комплекса переходного металла с субстратом и носителем (если [c.379]

    Интереснейшая особенность этих систем заключается в том, что катализатор содержит в данном случае связь металл — металл, образованную переходным металлом, обычно платиной, и элементом главной группы, обычно оловом. Рассматриваемые системы следует отличать от катализаторов, получающихся при взаимодействии комплексов переходных металлов с гидридами [c.20]

    Если даже ограничиться рассмотрением только октаэдрических комплексов переходных металлов первого ряда, то и для них имеется большое разнообразие, так как у них может быть до 10 -электронов и до 5 неспаренных электронов. При анализе спектров ЭПР этих систем необходимо знать число указанных электронов, рассматривать возможные эффекты Яна — Теллера и крамерсовское вырождение (см. выше). Для переходных металлов второго и третьего рядов спин-орбитальное взаимодействие возрастает, так что наблюдение и интерпретация спектров ЭПР их комплексов становится еще гораздо труднее. [c.72]

    Рассмотрение ЭКВ только начато в этой книге. Дальнейшее развитие таких представлений, теоретическое и экспериментальное исследование ЭКВ — одна из наиболее актуальных задач молекулярной биофизики. Здесь особенно перспективным представляется изучение ферментов, содержащих в качестве кофакторов атомы переходных металлов. О металлоферментах коротко рассказано в 6.8. Электронные оболочки переходных металлов являются мягкими в том смысле, что для их перестройки требуются сравнительно малые энергии — речь идет о -электронах. Соответственно координационные связи, образуемые атомом переходного металла, зависят от окружающей среды. Известно явление так называемо й дисторсионной изомерии— существования комплексов переходных металлов в изомерных формах, разнящихся длинами связей и углами между связями. Конформационная перестройка белковой структуры, образующей координационную систему переходного металла, может сильно воздействовать на строение такой системы. Тем самым, в этих случаях непосредственно реализуются электронно-конформационные взаимодействия. Их Изучение требует развития соответствующих разделов квантовой химии. Научная идеология этой области та же, что в современной неорганической химии, и поэтому законно считать исследования металлоферментов, а также любых комплексов биополимеров с металлами, относящимися к бионеорганической химии. [c.609]

    Продукты кислотно-основного взаимодействия комплексов переходных металлов с кислотами Льюиса часто подвергаются дальнейшим превращениям. Например, при взаимодействии [c.292]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    В последние годы при разработке ингибиторов коррозии наметилась тенденция к поиску и применению сырья, содержащего переходные металлы, комплексы на их основе и комплексообразующие соединения, которые взаимодействуют с переходными металлами, присутствующими в электролите или на защищаемой поверхности, образуя аналогичные комплексы. [c.292]

Таблица IV. 14, Вицинальные константы спин-спинового взаимодействия /нн (Гц) в я-комплексах переходных металлов с органическими лигандами Таблица IV. 14, <a href="/info/131993">Вицинальные константы спин-спинового взаимодействия</a> /нн (Гц) в я-<a href="/info/289605">комплексах переходных металлов</a> с органическими лигандами

    С ПОМОЩЬЮ этой пары монооксид взаимодействует с переходными металлами, образуя карбонилы - интересный класс нейтральных комплексов. [c.307]

    Образование активного центра включает две основные последовательные реакции окислительно-восстановительное взаимодействие соединения переходного металла и алюминийалкила и присоединение мономера к образованному комплексу. Так как процесс сополимеризации проводится на гомогенных или псевдогомо-генных каталитических системах, а определяющим во второй реакции является взаимодействие комплекса с этиленом, скорость которого тоже достаточно велика, то можно считать, что образование активного центра протекает мгновенно [14], а их число прямо пропорционально числу молекул переходного металла [16, с. 46—68]. [c.298]

    Методы ЯМР и ЭПР дали ценную информацию о твердых веществах и их взаимодействиях, в частности ЭПР — о кинетике радикальных реакций в твердой фазе, строении комплексов переходных металлов, характере связи в комплексных соединениях, элементарных актах на поверхности катализаторов, процессах радиолиза твердых тел и т. д. Методы представляют интерес для изучения бионеорганических и механохимических процессов, различных продуктов взаимодействия твердых веществ с реагентами, т. е. решения многих сложных задач. [c.213]

    Теория поля лигандов принимает во внимание взаимодействие орбиталей лигандов с орбиталями металла, по крайней мере в неявной форме. Для комплексов переходных металлов можно проводить и расчеты методом молекулярных орбиталей на разных уровнях приближений. Все эти более сложные расчеты предсказывают существование уровней, расщепленных таким же образом, как предсказывает теория кристаллического поля, и заселенных таким же числом электронов, какое могло бы поступить с d-уровня свободного атома металла. Детальное совпадение вычисленных свойств с экспериментальными может быть улучшено проведением более строгих расчетов, но важнейшие [c.315]

    В а-донорах высшей занятой молекулярной орбиталью является а-орби-таль. Алканы и циклоалканы, в которых ВЗМО локализованы в области С-С- и С-Н-связей, могут выступать в качестве доноров электронов при взаимодействии со сверхсильными кислотами и комплексами переходных металлов. Примеры таких реакций рассмотрены в гл. 2. [c.102]

    ЭПР комплексов переходных металлов. Важность их изучения обусловлена использованием для идентификации соединений по специфической картине СТС, получаемой информацией о распределении электронной плотности, спиновой плотности на разных ядрах, о том, какие заняты -орбитали, т. е. о направлении ян-теллеров-ского возмущения и т. д. При этом следует, конечно, заметить, что интерпретация спектров указанных комплексов встречает немалые трудности. Дело в том, что переходные металлы могут иметь несколько приближенно вырожденных орбиталей и несколько неспаренных электронов. В свободном ионе 5 /-орбиталей вырождену, но в комплексе взаимодействие их с лигандами различно и происходит разделение на две или более групп орбиталей. Например, в октаэдрическом комплексе имеется трижды вырожденный нижний уровень и дважды вырожденный верхний (у других типов комплексов орбитали группируются по-другому). [c.72]

    Заслуживают упоминания некоторые другие методы, обеспечивающие высокую степень дисперсности. Аэрогельный метод [26—30] получения дисперсных носителей или нанесенных металлов уже обсуждался (см. раздел 5.2.2). Использование органических комплексов переходного металла, связанных с различными металлами, является особенно ценным в приготовлении полиметаллических систем с хорошо известной структурой [64, 65]. Например, нанесенный кобальтродиевый катализатор готовили пропиткой оксида кремния раствором [СогНЬ](СО) 12 в гексане с последующим разложением и восстановлением [64]. Сильное взаимодействие между металлами определяется каталитическими свойствами биметаллических систем, которые существенно отличаются от свойств чистых металлов [64]. Данный препаративный метод полезен при изучении эффектив- [c.56]

    В этих соединениях вокруг центрального катиона (атома) регулярно расположены молекулы или ионы, и с этой точки зрения они напоминают комплексные соли. Однако название соль к ним неприменимо и лучше называть их просто комплексами или координационными соединениями. Лиганды, которые легко координируются атомами металла с образованием низковалентных комплексов, приведены в нижней части табл. 4.31. Координируются также амины, ионы С1 , Вг , 1 . Исключение составляет вода, р- и ионы кислородсодержащих кислот. Координационную связь в низковалентных комплексах нельзя объяснить путем кислотно-основных взаимодействий по Льюису (разд. В.З настоящей главы). Комплексы, содержащие такие связи, называют невернеровскими. Напротив, обычные комплексы, в которых взаимодействие осуществляется по Льюису (включая и незаряженные комплексные соли), называют вернеровскими. Такое деление удобно, и его часто используют на практике. Применяемые в синтетической химии катализаторы на основе комплексов переходных металлов в большинстве относятся к невернеровскому типу. [c.224]

    В. Окисление супврокоид-анионом. Супероксид-анион 0 , однозлектронно восстановленная форма (кислорода, обнаружен на поверхности различных ка тализаторов окисления. Кроме того, он является активной частицей в биохимических окислительных процессах, ускоряемых оксигеьазой и оксидазой. Эти ферменты, содержащие металлы, такие, как Си, Ъп, Мп и Ге, как известно, способсгауют диспропорционированию аниона 0 До молекулярного кислорода и пероксида водорода [ 46]. Изучение механизма взаимодействия О с комплексами переходных металлов необходимо для понимания принципа действия таких супероксиддисмутаз. [c.214]

    Альтернативным подходом (имеющим несколько преимуществ) к параметризации спектров комплексов переходных металлов может служить модель углового перекрывания [3, 46]. Эта модель исходит из приближенного подхода к энергиям соединений переходных металлов в рамках метода МО. В первую очередь мы рассмотрим простой монокоорди-национный комплекс М—L. Если М — переходный металл, нас больще всего интересуют энергии ii-орбиталей комплекса. Пять iZ-орби-талей комплекса симметрии С охватывают а-, я- и 5-представления, т. е. d(z ] — это ст-представление, d(xK-) и d(yz) — я-представление, а d xy) и d x —y ) — 5-представление. Рассматривая, например, ст-взаимодействие, мы можем записать секулярные уравнения [c.111]

    Для катионов с недостроенной 18-электронной оболочкой в меньшей степени применимы простые электростатические представления, основанные на законе Кулона. Такие электронные оболочки при действии электроотрицательных лигандов деформируются значительно больше, чем 8-электронные оболочки катионов, и доля ковалентности химической связи металл — лиганд сильно возрастает. Изменение устойчивости комплексов элементов четвертого периода можно объяснить с позиций усовершенствованной электростатической теории, которая принимает во внимание не только чисто кулоновское взаимодействие между частицами, но и форму орбиталей -электронов. Речь идет о теории кристаллического поля, созданной в 30-х годах этого столетия физиками Г. Бете и Ван-Флеком и позже примененной химиками для объяснения спектров поглощения и магнитных свойств комплексов переходных металлов. [c.250]

    Выделяют след, особенности комплексов переходных металлов, определяющих их каталитич. активность. 1) Способность образовывать комплексы с молекулами разл. типов, к-рые, входя в координац. сферу металла-комплексообразователя, активируются, что обеспечивает легкость их далънейщего взаимодействия. Известны, напр., комплексы с олефинами (ф-ла I), ацетиленами (II и III), оксидом углерода (IV и V), кислородом (VI и VII), азотом (VIII и IX) и др. (М - атом металла с лигандами). [c.43]

    Комплексы переходных металлов, содержащие лиганды с донорным атомом 51, изучены довольно слабо. Обычные способы их получения — это взаимодействие галогенидных производных Si с карбонильными анионами. Так, при смешении растворов 5]МезС1 и Na [Ре (СО)б (С2Н5) ] в атмосфере азота получается соединение [c.90]

    Как и ранее рассмотренные аналоги СО, молекула N2 также координируется обычно торцом , причем кроме о-связи образуется дативная связь ->я. Комплексы N2 (диазота) можно получить либо непосредственным взаимодействием соединений переходных металлов с молекулярным азотом, либо преобразованием связанных азотсодержащих лигандов. Первый вариант осуществляется при реагировании, например, [Ки(ЫНз)бН20] + с N2 в водном растворе получается [Ru(NHз)5N2] . Синтезы этого типа характерны также для фосфиновых комплексов Со, Ре, Ки, для ряда комплексов Мо, 0 , Ре, Со в присутствии сильных восстановителей. Так, взаимодействие смеси МоСи-ЬРЬгРМе с амаль- [c.105]

    Другую группу комплексов переходных металлов, которые могут быть использованы для синтеза замещенных алкенов, составляют я-аллилникельгалогениды [12]. Эти реагенты могут быть получены рядом методов, легко очищаются и в отсутствие кислорода хранятся в течение нискольких недель. Они могут быть получены с выходом 75—90% нагреванием аллилгалогенидов с тетракарбонилникелем в бензоле, однако в лабораторных условиях их удобнее получать взаимодействием бис (циклопентадиен-1,5) никеля с аллилгалогенидами при —10 °С, а также взаимодействием бис(я-аллил) никеля (II) с бромоводородной кислотой. В полярных координирующих растворителях эти комплексы реагируют с рядом органических галогенидов, образуя замещенные алкены [схема (2.10)] [13]. Реакция одинаково хорошо протекает для арил-, винил- и алкилгалогенидов, а также в присутствии гидроксильной, сложноэфирной и других функциональных групп. Например, комплекс (6) реагирует с 1-иод-З-хлорпропаном, образуя соединение (7) [схема (2.11)] [14]. [c.24]

    Сепулкраты получают при взаимодействии этилендиаминатных комплексов переходных металлов с аммиаком и формальдегидом, для синтеза производных саркофагина вместо аммиака (уравнение (3 13)) используют нитрометан [c.49]

    Качественное объяснение оптических и магнитных свойств координационных комплексов оказывается возможным на основе рассмотрения расщепления энергетических уровней в системе с одним -электроном (см. рис. 15.3). Соображения, изложенные в разд. 15.3, приводят к выводу об указанном выше снятнп вырождения -уровня, однако они ничего не говорят о величине этого расщепления. В принципе расщепление может быть сколь угодно малым (предел слабого поля) или, наоборот, очень большим (предел сильного поля). Реальное поведение комплексов переходных металлов зависит от природы лигандов. Чем сильнее взаимодействие между лигандами и металлом, тем больше поведение комплекса приближается к пределу сильного поля, и наоборот. В действительности это взаимодействие определяется характером химической связи, а не является чисто электростатическим. Многие незаряженные лиганды создают эффект более сильного поля, чем многие ионные лиганды. Например, для не- [c.320]


Смотреть страницы где упоминается термин Взаимодействие с комплексами переходных металлов: [c.343]    [c.13]    [c.36]    [c.105]    [c.403]    [c.219]    [c.677]    [c.538]    [c.2117]    [c.2203]    [c.209]    [c.143]    [c.219]    [c.315]    [c.14]   
Химия привитых поверхностных соединений (2003) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Комплексы переходных металлов

Металло-азо-комплексы

Металлов комплексы

Металлы переходные

взаимодействие с металлами



© 2025 chem21.info Реклама на сайте