Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Талий, комплексы

    Гетерогенный катализ через комплексообразование связан с образованием на поверхности катализатора промежуточного соединения в ходе суммарной цепи превращений в каталитическом акте. Различают два типа комплексов и соответственно два вида катализа через комплексообразование акцепторно-донорные комплексы, образуемые донорной связью с участием 8- и р-орби-талей, и координационные комплексы, образованные дативными координационными связями с участием й- и /-орбиталей. [c.59]


    При большом значении А октаэдрические комплексы невыгодны также для атомов и ионов с конфигурацией так как при этом один электрон заселяет сильно разрыхляющую молекулярную а Р-орби-таль. В этом случае (например, с лигандами сильного поля СЫ" или СО) более типичны димерные комплексы с сг-связями металл — металл (см, стр, 328)  [c.131]

    Карбонилы металлов. В теории поля лигандов принимается, что неподеленные пары электронов СО участвуют в образовании ковалентных связей, переходя на молекулярные орбитали комплекса. В октаэдрическом карбониле Сг(СО)в двенадцать электронов шести молекул СО переходят на о-связывающие орбитали комплекса (а, . Шесть электронов хрома располагаются на tгg- орбиталях (сильное поле, см. рис. 56). Эти орбитали не участвуют в образовании а-связей. Но они могут образовать -л-связи со свободными разрыхляющими л-орбиталями молекулы СО, каждая из трех г -орби-талей с гс -орбиталями двух молекул СО [c.128]

    Рассмотрим более подробно кин( тические свойства комплексов, образованных ионами переходных металлов. Лабильны все внешнеорбитальные комплексы этих ионов. Использование внешних -орби-талей для гибридизации характерно для конфигураций (Си2+) и (А +, Си+, 2п +, С(1 +, Hg +, Оа , 1п +, Т ) и для высокоспиновых комплексов ионов с конфигурациями от (а для октаэдрических комплексов, когда нужны две акцепторные -орбитали, и от до 8 (Мп2+, Ре"+ и Ре"+, Со2+, N 2+ и др.). [c.49]

    АЦЕТИЛЕНОВЫЕ КОМПЛЕКСЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ, ге-комплексы, содержащие в кач-ве лиганда ацетилен или его производные. Связь между атомом металла и лигандом осуществляется перекрыванием вакантной орбитали металла со связывающей зг-орбиталью ацетилена (связь донорно-акцепторного типа) и заполненной -орби-тали металла с разрыхляющей зг-орбнталью ацетилена (дативная связь), [c.228]

    Рассмотрим октаэдрический комплекс типа ML6 переходного металла М имеющего валентные Зё и 4р орбитали Пусть каждый лиганд Е обладает двумя а электронами способными взаимодействовать с центральным ионом Необходимо рассчитать МО комплекса которые образуются при взаимодействии девяти АО металла (одна 5, три р и пять ё орбиталей) с шестью а орби талями лигандов Подберем для каждой АО металла фд< группу перекрывающихся с ней орбиталеи лигандов которая приводит к наибольшему взаимодействию по условиям симметрии Эти орби тали лигандов можно рассматривать как одну групповую орбиталь и записать по методу МО ЛКАО в виде [c.45]

    Источниками загрязнения водных бассейнов являются сброс неочищенных или недостаточно очищенных вод промышленными и коммунальными предприятиями и крупными животноводческими комплексами, поступление ядохимикатов и удобрений с полей с талой и ливневой водой, сброс сточных вод с судов. В воду попадает большое количество синтетических детергентов. Моря, реки, ручьи, водоемы загрязняются белками, углеводами, жирами. Они дают устойчивую пену, обедняют воду кислородом, придают ей неприятный запах, вызывают гибель рыбы. [c.6]


    Нафталин и другие полициклические углеводороды — фенантрен, хризен, пирен, как и бензол, подчиняются правилу Хюккеля — содержат (4 п + 2) тг-электро-нов на связывающих молекулярных арби-талях. Молекулы этих углеводородов плоские, для них характерны высокие значения энергии сопряжения и комплекс свойств аренов. Все эти углеводороды, как и бензол, легко вступают в реакцию электрофильного замещения. С увеличением степени конденсации увеличивается реакционная способность. В молекуле нафталина связи 1-2, 3-4, 5-6 и 7-8 имеют более высокий порядок, более непредельны и имеют меньшую длину, чем связи 2-3 и 6- [c.154]

    В а-донорах высшей занятой молекулярной орбиталью является а-орби-таль. Алканы и циклоалканы, в которых ВЗМО локализованы в области С-С- и С-Н-связей, могут выступать в качестве доноров электронов при взаимодействии со сверхсильными кислотами и комплексами переходных металлов. Примеры таких реакций рассмотрены в гл. 2. [c.102]

    Альтернативным подходом (имеющим несколько преимуществ) к параметризации спектров комплексов переходных металлов может служить модель углового перекрывания [3, 46]. Эта модель исходит из приближенного подхода к энергиям соединений переходных металлов в рамках метода МО. В первую очередь мы рассмотрим простой монокоорди-национный комплекс М—L. Если М — переходный металл, нас больще всего интересуют энергии ii-орбиталей комплекса. Пять iZ-орби-талей комплекса симметрии С охватывают а-, я- и 5-представления, т. е. d(z ] — это ст-представление, d(xK-) и d(yz) — я-представление, а d xy) и d x —y ) — 5-представление. Рассматривая, например, ст-взаимодействие, мы можем записать секулярные уравнения [c.111]

    Роль комплексообразователя может играть любой элемент периодической системы. В соответствии со своей химической природой неметаллические элементы обычно дают анионные комплексы, в которых роль лигандов играют атомы наиболее электроотрицательных элементов, например ИРРеК Кз(Р04 , KslPS I Что же касается типичных металлических элементов (щелочных и щелочноземельных ме-тал.лов), то способность к образованию комплексных соединеиий с не рганическими лигандами у них выражена слабо. Имеющиеся [c.95]

Рис. 20-16. Влимие лч вязывания в циано-комплексах. У иона СЫ связывающая молекулярная п-орбиталь занята электронной парой (а), а разрыхляющая тс -орбиталь свободна (б). Орбитали металла типа более устойчивы в присутствии простых лигандов с орбиталями о-симметрии потому, что электроны на 2д-орбиталях не концентрируются в направлении лигандов. Но если у лигандов имеются заполненные л-орби-тали, они взаимодействуют с Чй Орбиталями металла (в) и снижают Рис. 20-16. Влимие лч вязывания в <a href="/info/701262">циано-комплексах</a>. У иона СЫ связывающая молекулярная п-<a href="/info/92139">орбиталь занята</a> <a href="/info/8609">электронной парой</a> (а), а разрыхляющая тс -<a href="/info/190303">орбиталь свободна</a> (б). <a href="/info/442060">Орбитали металла</a> типа <a href="/info/563879">более устойчивы</a> в присутствии <a href="/info/441939">простых лигандов</a> с орбиталями о-симметрии потому, что электроны на 2д-орбиталях не концентрируются в направлении лигандов. Но если у лигандов имеются заполненные л-орби-тали, они взаимодействуют с Чй <a href="/info/68278">Орбиталями металла</a> (в) и снижают
    ВИЯ. Однако в кремнии более высокий заряд ядра понижает энергию пустых З -орбиталей, и они оказываются ближе по энергии к 2р-орби-талям кислорода. Вследствие этого кислород может частично обобществлять свои неподеленные электронные пары с кремнием (рис. 21-8) в результате дативного взаимодействия, подобного Ь -> М-я- и М -> Ь-я-взаи.модействию в координационных комплексах, которое обсуждалось в разд. 20-3. Поскольку .у-орбиталь 51 простирается гораздо дальше в сторону атома О по сравнению с р-орбиталью при я-связи, атомы 51 и О не должны сближаться так сильно, как это требуется условиями образования двойной ря—ря-связи. Результатом этого обобществления неподеленных пар кислорода является то, что хотя энергия связи 51—81 на 171 кДж-мольменьше энергии связи С—С, связь 81—О прочнее, чем связь С—О, на 18 кДж-моль. [c.281]

    Проследить связь между окраской комплекса иона переходного ме-тал.та, обусловленной d — -переходом, и Dq проще всего на примере -комплекса, например комплекса Ti " в октаэдрическом поле. Основное состояние свободного иона описывается термом О, и, как указывалось ранее, вырожденные -уровни расщепляются октаэдрическим полем на совокупность из трехкратно вырожденного -состояния и двукратно вырожденного Е -состояния. Расщеп.тение составляет 10 Dq (рис. 10.7). С увеличением Dq возрастает и энергия АЕ (а следовательно, и частота) перехода. Тангенс угла наклона линий п Е составляет соответственно -ADq и + 6Dq. Величину А (см ) можно получить непосредственно из частоты полосы поглощения. Например,. максимум полосы поглощения Ti(H,0)g лежит при 5000 А (20000 см ). Величина А для воды, связанной с Ti , составляет око.ю 20000 см (Dq равно 2000 см ). Поскольку этот переход происходит с поглощением желто-зеленой компоненты видимого света, пропущенный свет пурпурный (голубой + + красный). При изменении лиганда меняется и окраска комплекса. Цвет раствора дополнителен к поглощенному (или поглощенным) цвету, поскольку окраску определяют линии пропускания. Визуально на- [c.89]

    В л-комплексах образуются гибридные Пе-, Пр- и (гг—1)< -орбн-тали (п — валентная оболочка). Если общее число электронов на этих орбиталях меньше числа электронов на аналогичных орбиталях благородного газа, незаполненные орбитали могут быть использованы для координации и последующего химического изменения молекул, окружающих комплекс, и тогда л-комплекс может проявлять каталитические свойства. Другой, более существенной причиной каталитической активности л-комплексов является неравномерность электронного облака, если металл окружен разными лигандами, как, например, в случае комплекса (СеН5СМ)2 Р(1С12. [c.102]


    Естественно, что теория кристаллического поля, исходящая из ионной модели, требует видоизменения при рассмотрении комплексов, в которых имеется заметная доля ковалентной связи. Когда эта доля сравнительно невелика, используется теория прля лигандов, по которой наличие ковалентной связи учитывается введением определенных поправок в расчеты, проводимые методами теории кристаллического поля. При рассмотрении комплексных соединений со значительной долей ковалентной связи применяется метод молекулярных орбиталей, учитывающий, так же как и теория кристаллического поля, особенности симметрии атомных орби талей (такой метод часто также называют теорией поля-лигандов)  [c.121]

    Молекула СО может выступать в качестве лиганда в различных комплексах. При этом за счет несвязывающей электронной пары углерода она проявляет а-донорные, а за счет свободных яР р.орби-талей — л-акцепто.рные свойства (см. стр. 127). [c.460]

Рис. 23.28. Энергия стабилизации кристаллическим полем (ЭСКП) для электронов на Зс/-орби-талях в комплексах с октаэдрической структурой. ЭСКГТ = 0,4Д (Д-энергия расщепления кристаллическим полем), а энергия дестабилизации = 0,6Д. Следует учесть, что реальная величина Д занисит от иона металла, его заряда, а также от лигандов. Рис. 23.28. <a href="/info/18758">Энергия стабилизации кристаллическим полем</a> (ЭСКП) для электронов на Зс/-орби-талях в комплексах с <a href="/info/101995">октаэдрической структурой</a>. ЭСКГТ = 0,4Д (Д-энергия <a href="/info/389782">расщепления кристаллическим полем</a>), а энергия дестабилизации = 0,6Д. Следует учесть, что реальная величина Д занисит от <a href="/info/31475">иона металла</a>, его заряда, а также от лигандов.
    Еще в начале гшошлого столетия Цейзе синтезировал. соль К[Р1С1з(С2Н4)Г Нелегко было в последующем истолковать ее строение при помощи обычных символов химической связи. Лишь в результате рентгеноструктурных исследований было обнаружено, что строение ее в принципе не может быть описано при помощи валентных черточек. В соли Цейзе осуществляется донорно-акцепторное взаимодействие за счет двух я-электронов этилена (донор) и пустой орбитали платины (акцептор) одновременно -электроны платины взаимодействуют с незаполненной разрыхляющей я-орби-талью этилена. Соль Цейзе оказалась л-комплексом следующего строения  [c.42]

    Как было указано ранее, спектр поглощения в видимой и УФ-област5ис обусловлен переходами электронов с одного энергетического уровня на другой. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с низшей /-орбитали на /-орбиталь с более высокой энергией. Например, комплекс (Т1(НаО)б имеет максимум поглощения при волновом числе О - 20300 см", что обусловливает фиолетовую окраску данного комплекса. Ион Т имеет только один /-электрон в октаэдрическом комплексе этот электрон может переходить с /2,-ор6итали на с,-орби-таль. Энергия квантов, отвечающая О - 20300 см" (242,8 кДж/моль), равна в соответствии с изложенным выше энергии перехода электрона с орбитали Га, на орбиталь е т. е. равна величине А. [c.132]

    На рис. 1.60 представлена энергетическая диаграмма МО в октаэдрическом комплексе. Переходу электрона с несвязывающей орбитали (2, на разрыхляющую орбиталь е] отвечает энергия расщепления Д. Таким образом, если в теории кристаллического поля предполагается, что переход, энергия Д которого определяется из спектральных данных, происходит между АО с низкой энергией (более высокой энергией ( /х, то в теории МО он рассматривается как переход с несвязывающей МО, сходной с атомными / -, гг-орби-талями, на разрыхляющую МО, образованную из атомных или /,1-,1-орбиталей. [c.137]

    Метод МО в качестве первого этапа предусматривает отбор атомных орбиталей центрального иона-комплексообразователя исключением тех из них, которые не принимают существенного участия в образовании химической связи. Для комплексов 3 -пepe-ходных металлов можно использовать 9 АО, подходящих по энергии 3 -opбитaли (5 АО), 45-орбитали (1 АО) и 4р-орбитали (3 АО). В ряде случаев используются также вакантные 4 -opби-тали. [c.120]

    Продемонстрирована применимость моде ш юкализованны>с молекулярных орбиталей для совместной интерпретации природы низших спин-разрешенных оптических переходов (<1-7Г )-типа, наблюдаемых в электронных спектрах поглощения, и характера электрохимических процессов - лиганд-центрированного восстановления и ме-тал-центрированного окисления комплексов. Показано, что как в моноядерных, так и биядерных системах оптические и электрохимические свойства определяются природой М(С Ы) -металлокомплексных фрагментов в их составе. При объединении M( N) - и М (С Ы) -фрагментов в биядерные [М(С Ы)(ц-СЫ)М (С Ы)] системы они сохраняют свои оптические свойства и электрохимические свойства и выступают в качестве в значительной степени изолированных хромофорных и электроактивных сфуктурных единиц. [c.62]

    По результатам проводимых в Эстонии обследований, в жилых помещениях в г. Кунда удельная активность по радону в среднем составляла 450, в г. Силламяэ - 260 и в г. Тала - 220 Бк/м". Высокое содержание радона в домах в этом регионе объясняется выделением его из почв и поступлением вместе с питьевой водой артезианских скважин, эксплуатирующих кембро-вендский водоносный комплекс. С водой извлекаются также большие количества урана и тория. При обследовании скважин водоснабжения 31 города и населенных пунктов северной Эстонии было установлено, что среднее содержание в воде составляло 6,6 мкг/л. Ее удельная активность по Ra была на уровне 102 пКи/л (3,76 Бк/л), а по [c.261]

    Общим свойством всех исследуемых комплексов ГАОС является понижение льюисовской кислотности алюминия за счет насыщения свободных р-орби-талей электронами донорной добавки. Обратное воздействие А1 на координированные Н-соединения и, следовательно, тип кислотности комплекса зависят от природы добавки. Ценную информацию в этом вопросе дали полуэмпири-ческие квантовохимические расчеты [83-85]. Комплексы существуют в разбавленных растворах индифферентных растворителей и их можно рассматривать в приближении изолированной молекулы . Методом ССП МО ЛКАО в приближении ППДП/2 была рассчитана структура комплекса RAI I2 с Н2О, спиртом и НС1. Комплексы представлялись в виде правильного тетраэдра, так как, согласно предварительным оценкам, искажение конфигурации за счет неэквивалентности заместителей у атома А1 не приводит к существенному изменению электронной плотности и разности энергий основного состояния. Наивыгоднейшую конфигурацию электрофильных центров определяли по минимуму энергии основного состояния, варьируя положения компонентов комплекса. Изменение прочности связи Э-Н (где Э - гетероатом электронодонорной добавки) и способности ее к протонизации предполагаются однозначно связанными с изменением порядка связи, полученной по расчету. [c.52]

    Как было показано Шоу и Таккером [43], некоторые из наиболее стабильных алкильных или арильных ко.мплексов образуются металлами, имеющими несвязываюпше или г -орбитали. иo-гие комплексы подчиняются правилу 18-ти электронов (см. ниже), размещенных на всех внешних р- и -орбиталях металла, участвующих в образовании связи. Четырехкоординационные плоские комплексы обычно имеют 16 электронов и вакантную рг-орби-таль. Другими распространенными конфигурациями являются с1°, [c.246]

    При традиционной сульфитной варке, когда древесина нагревается с сульфитной варочной кислотой, величина pH которой составляет 1,0—2,5, важнейшей химической реакцией полисахаридов ГМЦ является гидролиз гликозидных связей, катализируемый ионами водорода. Интенсивность гидролиза возрастает с повышением температуры варки и концентрации водородных ионов [187, 326—328]. Для примера приводим схему реакции гидролиза 4-0-.метилглюкуроноксилана (схема 9.1). Протон или, вернее, ион гидроксония НзО взаимодействует с ацетальным кислородом, образуя промежуточное неустойчивое соединение (1), которое распадается с разрывом гликозидной связи между С-1 и ацетальным кислородом. Образуется пои карбония (П), который, взаимодействуя с водой, дает концевую группировку (П1), и протон, образующий с водой новый ион гидроксония (IV). Макромолекула, таким образом, расщепляется на два фрагмента, на концах каждого из них присутствует гидроксильная группа. Часть молекулы, где разрыв произошел у С-1, является иолуаце-талью и обладает альдегидными свойствами [735]. Количество карбонильных групи в процессе гидролиза непрерывно увеличивается [745]. Общая скорость ироцесса зависит от устойчивости связи кислорода с С-1 гликозидной связи, устойчивости активного комплекса (I), а также от положения и устойчивости заместителей. [c.281]

    Обработка в натрийнафталиновом комплексе сО стоит в том, что фторопласт промывают ацетоном и погружают при 20°С на 10—600 с в раствор 46 г металлического натрия и 128 г нафталина в 1 л тет-рагидрофурана. Затем изделие промывают в органи ческом растворителе, например ацетоне, и в воде. Де таль после обработки темнеет, так как на ее поверХ ности образуются двойные связи и полярные группы (—ОН, =С0, =МН). [c.52]

    О возможности химического взаимодействия полимеров с металлами неоднократно упоминалось выше. Рассмотрим этот вопрос более подробно. Между атомами металла и углеводородами в системе адгезив — субстрат могут образовываться химические св1язи. Например, между углеводородом и металлом может возникнуть ковалентная связь. Чем больше число доступных d-орби-талей у атома металла, тем выше теплота хемосорбции [134]. Возможно, что в некоторых случаях происходят d-s-переходы для создания вакантных мест в d-слоях [134]. Координационные комплексы металлы могут образовывать с полимерами, имеющими [c.309]


Смотреть страницы где упоминается термин Талий, комплексы: [c.515]    [c.97]    [c.178]    [c.181]    [c.183]    [c.220]    [c.123]    [c.276]    [c.384]    [c.385]    [c.176]    [c.219]    [c.81]    [c.253]    [c.15]    [c.38]    [c.223]    [c.261]    [c.82]    [c.15]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Лен талей

Салова, Т. Ф. Ахунов, У. Б. Имашев, С. С. Злотский, Д. Л. Рахманкулов. Колебательные спектры и состав Н-комплексов молекул воды с аде талями

Талиев

Талий, комплексы с актинами и полиэфирами

Талий, комплексы с пируваткиназой



© 2024 chem21.info Реклама на сайте