Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксистеариновая

    Гидрофобизаторами служат оксистеариновая кислота, гидрированное касторовое масло, белый воск, парафин и другие. [c.153]

    Установка полунепрерывного производства сочетает преимущества периодического и непрерывного способов, учитывает специфику производства мыльных смазок и обеспечивает максимально возможную производительность при оптимальном качестве готовой продукции. Назначением установки является производство мыльных смазок любого типа на основе стеариновой и 12-оксистеариновой кислотах, на природных и синтетических жирах. В качестве дисперсионной среды можно использовать нефтяные и синтетические масла, а также их смеси (в зависимости от области применения смазок и предъявляемых к ним требований). [c.102]


    Первой отечественной литиевой смазкой является ЦИАТИМ-201, которую готовят загущением масла МВП стеаратом лития с добавлением 0,3% дифениламина. Разработаны высококачественные литиевые смазки для узлов трения, работающих при высоких нагрузках и в широком интервале температур и скоростей — ли-тол-24, литол-459, фиолы (1,2,2М, 2У, 3), ЛС-1п, ЛСц-15 и др. В качестве жирового омыляемого сырья в этих смазках использована 12-оксистеариновая кислота. [c.380]

    Качество гидрированного касторового масла и 12-оксистеариновой кислоты [c.240]

    Мыла жирных кислот являются основным загущающим компонентом большинства мыльных смазок, применяемых в самых разнообразных узлах трения, а также защитных и уплотнительных смазок. Они представляют собой соли высших жирных кислот и различных металлов, а также нафтеновых и смоляных кислот. В производстве смазок применяются или получаются в самом процессе изготовления натриевые, литиевые, калиевые, кальциевые, бариевые, алюминиевые, цинковые, свинцовые, магниевые и некоторые другие мыла стеариновой, олеиновой, оксистеариновой, рицинолевой, нафтеновых и других кислот, а также их смесей и смесей с глицеридами, образующимися при омылении растительных масел и животных жиров. [c.686]

    Диэтиловый эфир мезовинной кислоты Этиловый эфир миндальной кислоты Метиловый эфир 10-оксистеариновой кислоты Метиловый эфир 12-оксистеариновой кислоты [c.221]

    Получение литиевых смазок. Литиевые смазки работоспособны в широком интервале температур, нагрузок и скоростей, отличаются высокой термо- и влагостойкостью и достаточно стабильны во времени. До последнего времени в качестве жирового сырья для приготовления литиевых смазок в основном применяли техническую стеариновую кислоту, а также другие животные и растительные жиры (или их смеси). В настояш,ее время большую часть литиевых смазок готовят на выделенной из гидрированного касторового масла 12-оксистеариновой кислоте . Литиевое мыло 12 оксистеариновой кислоты обладает большим загущаюш,им действием, чем соответствуюш ее мыло стеариновой кислоты. Суш,е-ственным преимуществом смазок на оксистеарате лития является их болое высокая механическая стабильность. [c.260]

    Процессы деградации кислот в условиях недр моделировались в многочисленных экспериментах. При температурах 150—250°С в контакте с глинами ундециленовая [671], стеариновая [672], бегеновая [542], олеиновая [673, 674], оксистеариновая [675] кислоты превращались в нефтеподобные вещества, содержащие разнообразные углеводороды. Показано [542], что в отсутствие во- [c.114]

    Значительное количество пластичных смазок и ранее выпускали с вовлечением жирового сырья. В США мыльные смазки производят главным образом на основе животных жиров, касторового масла и продуктов его переработки (до 40% всех пластичных смазок) и лишь незначительное количество — на основе других растительных масел и жиров морских животных и рыб. В нашей стране для получения пластичных смазок также применяют растительные масла и продукты их переработки саломасы, технический стеарин, олеин, 12-оксистеариновую кислоту. В наибольшей степени используют хлопковое и касторовое масла. Однако наряду с растительным сырьем широко используют и синтетические жир- [c.257]


    Загущающий эффект литиевого мыла 12-оксистеариновой кислоты максимален для смазок с нейтральной, слабокислой (до [c.262]

    МИДОМ и, таким образом, могут быть отделены от нормальных жирных кислот, содержащих 12 и более атомов углерода в молекуле и образующих кристаллический комплекс с карбамидом. Следует отметить, что конфигурация стереоизомеров также влияет на образование комплексов карбамида. Так, для 9,10-ди-оксистеариновой кислоты известны следующие два рацемических соединения  [c.220]

    В 1914 г. синтезировали этиловые эфиры рицинолевой кислоты и жирных кислот хлопкового масла, а затем стали получать эфиры за счет спиртовой группы оксикислот или их глицеридов (оксистеариновой кислоты, касторового масла и т. п.), приводя их во взаимодействие с уксусной кислотой, с жирными кислотами кокосового масла и т. п. Эти сложные эфиры оказались ценными добавками к осветительным маслам [c.437]

    Силиконовая жидкость, комплексное кальциевое мыло стеариновой и уксусной кислот, антиокислительная присадка Масло минеральное, литиевое мыло оксистеариновой кислоты [c.248]

    Масло индустриальное, комплексное бариевое мыло высших жирных кислот хлопкового масла, оксистеариновой кислоты, синтетических жирных кислот [c.248]

    Оксистеариновая (12-оксиоктадекановая) Пальмитиновая Рицинолевая [c.278]

    Стеарин — техническая стеариновая кислота — содержит примесь пальмитиновой, оксистеариновой и изоолеиновой кислот. Полупрозрачная твердая масса белого или желтоватого цвета, жирная на ощупь. Получается из смеси жирных кислот, образующихся при расщеплении животных жиров и растительных масел путем дистилляции и отпрессовывания. Вырабатывают стеарин 1) дистиллированный двух сортов каждый сорт выпускают прессованным и непрессованным (последний вырабатывается из растительных масел) и 2) недистиллированный. Дистиллированный стеарин 1-го сорта должен быть белого цвета, 2-го сорта может быть белого или слегка желтоватого цвета, дистиллированный стеарин в расплавленном состоянии должен быть совершенно прозрачным. Недистиллированпый имеет коричневый цвет, в расплавленном виде — мутноватый. Стеарин выпускается в виде плиток, кусков и чешуек. [c.680]

    Оксистеариновая кислота СНз(СН2)5СНОН(СН2)юСООН образуется в результате гидрирования касторового масла (рицинолевоп кислоты) с последующим омылением гидрированного продукта и разложением полученного мыла кислотой. Из полученной смеси жирных кислот дистилляцией выделяют оксистеариновую кислоту. Этот продукт известен также под названием олеовакс А . Температура застывания его не ниже 85° С, кислотное чпсло не более 1,2 мг КОН на 1 г, йодное число не более 17. [c.681]

    Водостойкие литиевые смазки — ЦИАТИ М-201 и л и т о л-24 весьма перспективны. Смазку ЦИАТИМ-201 получают путем вагущения маловязкого масла при введении 10% литиевого мыла стеариновой кислоты. Для смазки литол-24 основой служит более вязкое масло, а загустителем — литиевое мыло оксистеариновой кислоты. В литол-24 введен краситель, придающий смазке красный цвет. [c.57]

    Литиевые смазки на 12-оксистеариновой кислоте или другом омыляемом сырье готовят в варочном аппарате емкостью 1 — 2 л, оснащенном боковым или нижним электрообогревом. В аппарат одновременно загружают /д общего количества дисперсионной среды и все омыляемые компоненты. Содерншмое аппарата нагревают до 80—85 °С и при непрерывном перемешивании (во избежапие выброса) тонкой струей приливают расчетное количество водного раствора гидроокиси лития (8—10%-пый раствор). Омы- [c.260]

    Ширные кислоты нормального строения, имеющие достаточно длинную неразветвленную углеводородную цепь, как и углеводороды, способны образовывать твердые кристаллические комплексы с карбамидом. Шленк и Хольман [305] установили, что комплексы с карбамидом образуют кислоты, начиная с масляной. Однако комплексы с кислотами низкого молекулярного веса очень непрочны п уже при комнатной температуре диссоциируют. Прочные кристаллические комплексы получаются, начиная с каприловой кислоты, имеющей в своей цепи восемь углеродных атомов. Кроме того, комплексы с карбамидом могут давать некоторые окси-и кето-кислоты, например 12-оксистеариновая, 12-кетостеарино-вая, 9-10-диоксистеариновая. В связи с этим комплексообразование с карбамидом может быть применено для выделения свободных жирных кислот из жиров, растительных масел, иолимеризованных жирных кислот, а также для разделения смесей жирных кислот и их производных. При этом их разделение может основываться на различии в длине цепи, степенях разветвленности и ненасы-щенности. [c.219]

    В мешалке готовят расплав 12-оксистеариновой кислоты (12-ОСК) в дисперсионной среде (1 1) соответствующих емкостях приготовляют водный раствор (суспензию) едкого лития и. раствор присадок в масле (или суспензию дисульфида молибдена). Стадия омыления проводится в реакторах 3 и 6, куда подают расчетные количества масла, нагретого до 80°С, и через дозаторы 2 и 5—12-ОСК и водный раствор едкого лития. При постоянном перемешивании температуру реакцивнной смеси доводят до 100 °С и начинают циркуляцию смеси через клапанные гомогенизаторы 32. При тщательном перемешивании в течение 1,5—2 ч происходит омыление 12-ОСК (для проверки полноты омыления периодически отбирают пробу). [c.373]


    До недавнего времени важнейшим сырьевым источником технического масла во всем мире являлись плантации клещевины. Касторовое масло, благодаря уникальности своих свойств — не-йысыханию, высокой вязкости и сравнительно низкой температуре застывания, издавна используется в производстве смазочных материалов. Это — единственное растительное масло, содержащее в своем составе до 85% рицинолевой оксикислоты. Вследствие этого оно является единственным источником промышленного получения 12-оксистеариновой кислоты (путем гидрирования), являющейся важнейшим компонентом в производстве литиевых смазок. Это обстоятельство потребовало расширения производства касторового масла. Так, в США уже с 1950 г. начали культивировать собственные плантации клещевины. Однако, несмотря на перечисленные факторы, мировое производство касторового масла в 1964—1968 гг. лишь незначительно превышало 0,8 млн. т, а в последующие годы начало снижаться. Клещевина с успехом произрастает в субтропических и тропических стра- [c.142]

    Отдельно следует выделить процесс гидрогенизации касторового масла, осуществляемый с целью получения 12-оксистеари-новой кислоты (2—3 МПа, 130—135°С, никелевый катализатор умеренной активности). Эта кислота идет на приготовление литиевых смазок с наиболее высокими эксплуатационными свойствами. Качество гидрированного касторового масла и выделенной из него 12-оксистеариновой кислоты показано в табл. 4.29. [c.240]

    Специфические свойства кислоты не позволяют использовать наиболее профессивный процесс безреактивного расщепления, так как его проводят при 220—260°С, когда кислота дегидратируется (потери составляют до 40%). Поэтому 12-оксистеариновую кислоту вьще-ляют омылением гидрированного касторового масла 20—25%-ным раствором едкого натра с последующим разложением солей технической соляной кислотой. [c.241]

    В Молдове разработана литиевая смазка на основе рапсового масла. Ее состав (% мае.) дисперсионная среда 81,1—84,8 литиевое мыло 12-оксистеариновой кислоты — 11 — 15 вязкостная присадка полиизобутилен П-20 — 3,7—4,1 противоокислитель Нафтам-2 — 0,6— 1,0. Новая смазка обладает рядом преимуществ по сравнению с товарными продуктами (табл. 4.35) работоспособна в диапазоне температур от -40 до 130°С, по смазочным свойствам значительно превосходит лучшие товарные продукты, обладает хорошей механической стабильностью и низкой испаряемостью. Процесс изготовления смазки несложен. Ее можно использовать не только как продукт общего назначения, но и в тяжелонафуженных узлах трения, в условиях вакуума. [c.259]

    При каталитическом гидрировании перекисной фракции получалась смесь метиловых эфиров оксистеариновых кислот, например IV. Эфиры оксикислот были дегидратированы над борной кислотой до смеси эфиров моноеновых кислот (например, V), которые после омыления, окислительного расщепления перманганатом и перйодатом и удаления низкомолекулярных одноосновных кислот перегонкой с паром приводили к образованию смеси дикарбоновых кислот  [c.609]

    Как известно, при окислении олеиновой кислоты перманганатом калия в присутствии недостаточного количества едкого кали помимо диола образуется смесь 9, 10-и 10, 9-кето-оксистеариновых кислот. Суэрн и сотр. [27] показали, что при наличии 1 же едкого кали выходы диола и кетола зависят от pH раствора с высоким выходом кетол образуется в нейтральной среде. По непонятным причинам эта же реакция с элаидиновой кислотой (гранс-изомером олеиновой кислоты) лишь в незначительной степени зависит от pH среды (см. табл. 3). [c.119]

    Много внимания было уделено стеариновому производству — возможности повышения выхода твердых продуктов. Развивая работы А. М. Зайцева, изучали строение оксистеариновой кислоты, а также образование стеаролактона при действии серной кислоты на олеиновую и на технические жирные кислоты. Найдя условия наибольшего выхода лактона, вели в 1902/03 г. в течение 2,5 месяцев опыты в производственном масштабе. По ряду причин (лактон в основном скапливался в отходах от прессования, ухудшался цвет стеарина и т. д.) от применения метода отказались. Опыты с лактонами продолжали и в 1906 г. Ряд статей Жукова и Шестакова об оксистеариновых кислотах и, о -лактонах имел несомненное научное чначение в частности, в 1925—1927 гг. их работы по лактонам были продолжены за рубежом К тому же циклу работ примыкает исследование о соединениях кетонов и альдегидов с кислотами.  [c.435]

    Инж. В. А. Щавинский ставил на заводе производство камфоры из пихтового масла (М. А. Блох. Указ. соч., т. I, стр. 741). А. А. Жуков получил привилегии в 1908 г. № 12807 на способ омыления уксуснокислых эфиров борнеола, изоборнеола и терпинеола, в 1910 г. № 17753 на способ изготовления олифы, в 1917 г. на способ приготовления осветительных масел из минеральных и сложных эфиров оксикислот (оксистеариновой и др.). [c.440]

    А. А. Альбицкого. В 1903 г. Н. и А. Зайцевы 2 опубликовали ра боту о солях оксистеариновой кислоты продолжали деятельность в области химии и технологии жиров Е. И. Любарский, 3. М. Таланцев и др. [c.445]

    Хозяйственные и туалетные М.-осн. бытовое моющее средапво. Технические М.-загущающий компонент большинства мыльных смазок, применяемых в узлах трения, а также защитных и уплотнит, смазок (см. Пластичные смазки. Присадки к смазочным материалам). В произ-ве смазок используют натриевые, литиевые, калиевые, кальциевые, бариевые, алюминиевые, цинковые, свинцовые, магниевые и нек-рые др. М. стеариновой, олеиновой, гидро-оксистеариновой, ршщнолевой, нафтеновых и др. к-т, или их смесей, а также смесей с глицеридами, образующимися при омылении растит, масел и животных жиров. Натриевые М. стеариновой и др. к-т широко применяют при изготовлении пластичных смазок, имеющих высокую т-ру плавления, и используют при более высоких т-рах, чем многие др. смазки. Поскольку натриевые М. водорастворимы, приготовленные из них смазки в процессе применения не должны соприкасаться с водой. [c.156]

    Для расщепления жиров в технике при фабрикации свечей и мыла имеют большое значение так называемые реактивы Петрова и Твитчеля Первый представляет собой сульфокислоты, получающиеся при очистке нефти крепкой серной кислотой, а второй является продуктом сульфирования касторового масла, смеси олеиновой кислоты с нафта-пином и т. д. Быстрое омыляющее действие зтих препаратов объясняется тем, что они эмульсируют жиры и благодаря этому увеличивается поверхность соприкосновения с омыляющей жидкостью. Химическая природа реактивов Петрова и Твитчеля не вполне выяснена, но в случае нафталина и олеиновой кислоты повидимому существенное значение имеет зфир нафталинсульфокислоты и одной из оксистеариновых кислот. [c.370]


Смотреть страницы где упоминается термин оксистеариновая: [c.356]    [c.263]    [c.264]    [c.18]    [c.49]    [c.348]    [c.348]    [c.20]    [c.246]    [c.26]    [c.155]    [c.156]    [c.65]   
Химические товары Том 5 (1974) -- [ c.358 ]




ПОИСК







© 2025 chem21.info Реклама на сайте