Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитическая химия ионообменный

    Аналитические применения. В работах Самуэльсона дана сводка большого числа работ по применению в аналитической химии ионообменного разделения. Обычно колонки используют как вследствие многократности равновесных стадий, так и из-за удобства эксперимента. Как уже упоминалось, целесообразно использовать сильнокислотные катиониты и сильноосновные аниониты. Ниже лишь в качестве иллюстрации будут приведены типичные примеры применения ионообменных процессов. [c.571]


    В ряде статей [5, 6, 55] были исследованы математические свойства решений на основе уравнений метода, а также проблемы влияния ошибок в исходных данных на точность решения [42, 56]. Ряд модификаций метода позволил распространить его для расчетов нри частично заданном равновесном составе (например, для выбора соотношений начальных концентраций буфера с заданной равновесной концентрацией одной из частиц, условий маскировки и демаскировки в аналитической химии и т. п.) [5, 57—59], для расчета одной неизвестной константы по измеренной равновесной концентрации или растворимости какой-либо частицы в системе произвольной сложности [60], для расчетов ионообменных и доннановских равновесий [61, 62]. Процедуры, осуществляющие некоторые из указанных модификаций метода на языке АЛГОЛ-60, опубликованы в статьях [5, 61]. Там же приведены примеры их использования. [c.29]

    В заключение необходимо отметить широкое применение ионообменной адсорбции для извлечения и разделения ионов. Ионный обмен применяется для умягчения и очистки воды, извлечения ценных компонентов, например урана, золота, серебра. Сейчас нет производства по переработке урановых руд, в котором пе применялась бы ионообменная адсорбция. Ионный обмен используется для разделения редкоземельных элементов, что позволило получать нх в больших количествах и с высокой степенью чистоты. Раньше для этой цели применяли перекристаллизацию, производительность которой несравненно меньше. Ионообменная адсорбция является одним из важных методов в аналитической химии. [c.172]

    Самуэльсон О. Ионообменные разделения в аналитической химии. М.. Химия, 1966. 416 с. [c.242]

    Ионный обмени его применение. Изд. АН СССР, 1959, (319 стр.). Сборник статей различных авторов — крупных специалистов по ионному обмену. Отдельные статьи содержат сведения о классификации ионитов, их химическом составе и методах синтеза о теории ионного обмена и ионообменной хроматографии о применении ионитов в аналитической химии и технологии неорганических веществ, в промышленности, медицине о сорбции органических соединений. Каждая глава снабжена обширным библиографическим списком. [c.489]

    С давних пор по традиции аналитической химии в учебных планах отводилось место вслед за курсом неорганической химии. Поэтому аналитическая химия являлась как бы естественным продолжением курса неорганической химии. Это обстоятельство накладывало особый отпечаток на учебную программу по аналитической химии, представлявшей собой теорию и практику так называемых классических (качественного, весового и объемного) методов анализа неорганических соединений. Все к этому привыкли, и раньше это оправдалось многими обстоятельствами. Подлинно же современную аналитическую химию нельзя изучать на основе только неорганической химии, поскольку на примерах реакций, известных из курса неорганической химии, невозможно изучать процессы, связанные с применением органических реагентов, индикаторов, экстрагентов, органических соосадителей, ионообменных смол, органических растворителей и т. п. [c.15]


    Для проведения ионного обмена вначале применяли природные силикаты — цеолиты, позже начали применять сульфированные угли и перму-титы (синтетические силикаты), но эти иониты не получили распространения вследствие ряда недостатков (небольшая механическая прочность, низкая обменная емкость и неустойчивость к действию химических реагентов). В 1935 г. Адамс и Холмс получили синтетическим путем ионообменные смолы [38], которые нашли широкое применение в различных областях, в том числе и в аналитической химии. [c.371]

    В аналитической химии применяют три метода ионного обмена статический (периодический процесс), метод с применением ионообменных колонок (динамический метод) и метод с применением мембран. [c.377]

    В соответствии с масштабами использования в практике неорганического анализа большое внимание в книге уделено ионообменной хроматографии, ионообменникам, рассмотрению закономерностей статики и динамики ионообменных процессов, а также использованию ионитов, особенно органических, в аналитической химии. [c.4]

    Наряду с широким использованием ионообменных высокомолекулярных соединений в аналитической химии и в технике, в последние годы все большее внимание исследователей привлекают неорганические ионообменные материалы. Интерес к ним основывается на большей по сравнению с ионообменными смолами устойчивостью, в частности к действию высоких температур и достаточно интенсивному [c.37]

    Часто ионообменные смолы обладают селективностью по отношению к какому-то одному иону, находящемуся в растворе в смеси с другими ионами того же знака заряда. В аналитической химии селективное действие ионообменных смол используется в практике хроматографического разделения компонентов сложных смесей электролитов [40,41]. [c.54]

    Наиболее обширной областью использования ионообменных процессов в аналитической химии следует, по-ви-димому, считать хроматографическое разделение смеси ионов, а также ионообменный хроматографический анализ металлов и сплавов. Ионный обмен сам по себе не позволяет открыть или определить какие-либо ионы. Эта задача решается при сочетании ионообменных процессов с каким-либо известным качественным или количественным методом определения катионов и анионов. [c.139]

    О. С а м у э л ь с о н. Ионообменное разделение в аналитической химии. Изд-во Химия , М.—Л., 1966. [c.226]

    Вследствие своей универсальности ионообменно-хроматографический метод с успехом применяется для решения разнообразных задач аналитической химии для обнаружения, разделения, концентрирования, а также определения неорганических и органических соединений, находящихся в водных или водно-органических растворах в виде ионов. Особенно эффективно используется ионообменная хроматография при анализе неорганических соединений. С помощью ионообменных сорбентов возможно разделение смесей любой сложности. [c.190]

    Практическое применение в аналитической химии получили синтетические ионообменные смолы они представляют собой высокополимерные соединения с сетчатой или трехмерной структурой строения. [c.345]

    Во-первых, при всестороннем, комплексном освещении вопроса применения ионного обмена в аналитической химии материал в книге излагается несколько фрагментарно. Так, полезные сведения по теории ионного обмена не используются при выборе условий проведения опытов и в лучшем случае выполняют чисто эвристическую, познавательную функцию. Равным образом выбор конкретной методики не базируется на свойствах ионообменных сорбентов, описанных в тексте и приведенных в справочном разделе. Не аргументируется и выбор технических средств эксперимента формы колонки, метода наблюдения за ходом процесса. Было бы неправильным требовать от автора целостного изложения всего огромного аналитического материала, но наличие хотя бы отдельных примеров такого подхода было бы весьма желательным. [c.7]

    Подробнее о хроматографическом методе анализа см. в книгах Ш е м я-к н н Ф. М., М и ц е л о в с к и й Э. С., Романов Д. В., Хроматографический анализ, Госхимнздат, 1955 Самуэльсон О., Ионообменные разделения в аналитической химии, Изд. Химия , 1966, [c.133]

    О. Самуэльсон. Применение ионного обмена в аналитической химии. Издатинлит, 1955, (296 стр.). В книге изложены методы хроматографического анализа, основанные в значительной части на собственных исследованиях автора и его сотрудников. Приведен краткий исторический обзор применения неорганических и органических ионитов, описаны основные свойства ионообменных смол, рассмотрены теории ионного обмена и техника его применения в аналитической химии. Описаны примеры разделения и открытия ионов различных металлов, анионов, углеводородов, алкалоидов, ан гибио-тиков, витаминов и ряда других органических веществ. Описано применение метода для исследования растворов комплексных соединений. [c.489]


    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    Колоночная хроматография является макрометодом. Применение зто-го метода для проведения микро- и полумикроопределений связано с использованием чувствительных детекторов, имеющихся лишь для некоторых веществ, действие которых основано, например, на измерении радиоактивности. За последние два десятилетия колоночная хроматография потеряла прежнее значение. В области аналитической химии ее вытеснили такие методы, как бумажная и тонкослойная хроматография. Однако колоночную хроматографию можно применять в области препаративной химии. Эта тенденция развития не характерна для ионообменной и гель-хроматографии. [c.354]

    В пособии изложены основные принципы. хроматографического анализа в применении к исследованию многокомпонентных растворов неорганических ве-ш,еств, теоретическое обоснование каждого метода, рассмотрены возможности того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообразовательная, окислительно-восстановительная хроматография в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, какие могут возникнуть в работе химика-аналитика как в чисто прикладном аспекте, так и в процессе научного эксперимента. Большое внимание в настоящем учебном руководстве уделено ионообменной хроматографии, ионообменни-кам и рассмотрению закономерностей статики и динамики ионообменных процессов, а также использованию ионитов, особенно органических, в аналитической химии. [c.2]

    Теорию динамики ионного обмена в хроматографии успешно развивает в течение последних лет В. В. Рачинский с сотрудниками. Мы сочли полезным выборочно изложить теоретические построения В. В. Рачинского, С. М. Рустамова и В. А. Гарнецкого в области ионообменной хроматографии, В. В. Рачинского и А. А. Лурье вобласти теории осадочной хроматографии в той части, которая, на наш взгляд, имеет наиболее близкое отношение к аналитической химии. [c.4]

    Лш1 Риман В, Уо ПОН Г, Ионообменная хроматография в аналнти-ческой химин, пер с т-т. М, 1973 Сенявин М М, Ионный обмен в технологии и анализе неорганических веществ, М, 1980, Мархот М, Ионо-обменникн в аналитической химии, пер. с англ, ч. 1-2, М, 1985, Остерман Л. А., Хроматография бетков и нуклеиновых кислот, М, 1985. [c.264]

    Комплексообразование существенно влияет на поведение ионов плутония различных валентностей в процессе химического выделения и определения этого элемента. Оно может стимулировать или замедлять реакции окисления и восстановления. Подбором комплексующих анионов решаются химико-аналитические задачи осадительной, экстракционной и ионообменной очистки плутония. Велико значение комплексных соединений для титраметрического определения плутония в присутствии мешающих элементов. Ниже будут освещены литературные данные по комплексообразованию плутония, имеющие значение в аналитической химии элемента. [c.38]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Несомненным достоинством книги М. Мархола является всестороннее освещение вопроса применения нонообмеиников в аналитической химии. В ней дается общее представ ление о синтетических органических (иониты) и различных неорганических (оксиды и гидроксиды, гетерополикислоты, фос-форомолибдаты и пр.) ионообменных сорбентах, подробно описаны основные свойства ионообменных сорбентов и методики их определения, а также кратко изложены вопросы теории ионообменное равновесие и теория тарелок. Основное внимание автор уделяет изложению хроматографических методов разделения ионов по группам (подгруппам) периодической таблицы Д. И. Менделеева, включая редкоземельные и трансурановые элементы (материал этого раздела занимает почти половину книги). Кратко описано применение ионитов для определения общего солесодержания растворов и удаления мешающих ионов. Специальная глава посвящена технике выполнения ионообменных опытов. [c.6]

    Монография состоит из трех частей (8 глав и 2 приложения). В первой части изложены общие понятия и o HOBHbte характеристики ионообменников и ионообменных процессов. В нее включены также теоретические разделы, связанные с использованием ионообменников в аналитической химии, в частности для разделения смесей ионов. [c.9]

    В настоящее время большое внимание уделяется повышению селективности ионообменных процессов за счет использования селективных ионооб-менииков. Последние получают введением соответствующих функциональных групп (производных органических реагентов, известных в аналитической химии) в полимерную матрицу. Функциональные группы этих ионообменников обладают способностью образовывать комплексы или хелаты с некоторыми ионами и благодаря этому (при соответствующей обработке анализируемого раствора) селективно поглощают один вид или ограниченную группу ионов из сложных смесей ионов. [c.32]

    Общая схема ионообменного процесса в колонках включает стадии сорбции, промывание соответствующим растворителем или раствором (чаще всего водой), регенерацию (элюирование сорбированных ионов). Эти операции подробно описаны в т. ПВ omprehensive Analyti al hemistry (p. p. 230 — 236). Представляют интерес особые случаи применения этих операций в аналитической химии. [c.40]

    Самуальсон О. Ионообменное разделение в аналитической химии. М., Химия , 1963. [c.216]


Библиография для Аналитическая химия ионообменный: [c.226]    [c.138]    [c.178]   
Смотреть страницы где упоминается термин Аналитическая химия ионообменный: [c.145]    [c.69]    [c.520]    [c.225]    [c.319]    [c.4]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая химия



© 2025 chem21.info Реклама на сайте