Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменные смолы и их основные свойства

    Ионообменные смолы и их основные свойства [c.386]

    Методы определения химических и физических свойств ионообменных сорбентов. Подготовка ионитов к работе. Иониты синтезируются в аппаратуре, недостаточно защищенной от коррозионного воздействия реакционной среды. Поэтому в гранулы ионообменных смол попадают ионы металлов, в основном железа. Кроме того, смолы могут содержать некоторое количество исходных мономеров и других органических загрязняющих веществ. Прежде чем применять иониты для анализа или определять их химические и физические свойства, необходимо их подготовить к работе. Наиболее удобны иониты со средним диаметром зерен 0,25—0,50 мм. [c.164]


    Иониты — это синтетические ионообменные смолы, их свойствам и применению уделено основное внимание [c.40]

    В ионообменной хроматографии нерастворимой неподвижной фазой служит полимерная ионообменная смола (с кислотными или основными свойствами) подвижной фазой является ионный раствор (водные растворы кислот, оснований, солей). [c.380]

    Основными достоинствами синтетических ионообменных смол как адсорбентов являются их большая обменная емкость, химическая стойкость и механическая прочность, разнообразие кислотно-основных свойств. Обменная емкость ионитов зависит главным образом от числа активных (ионогенных) групп в ионите, приходящихся на единицу массы сухой смолы. Поэтому для данного ионита емкость постоянна. Однако на практике емкость ионита зависит от условий проведения адсорбции, а также от свойств и размеров адсорбируемых ионов. Фактическая емкость не всегда достигает теоретической величины. [c.341]

    В ионообменной хроматографии применяют разнообразные сорбенты, используемые как для разделения белков, так и для разделения неорганических ионов и небольших молекул. Эти сорбенты можно разделить на при основных вида ионообменные смолы, пелликулярные материалы и силикагель с химически привитой фазой, обладающей ионообменными свойствами. Пелликулярные сорбенты в настоящее время практически не применяют, их используют лишь для заполнения предколонок и при воспроизведении старых методов. [c.110]

    Основные свойства сшитых полиметакрилатных ионообменных смол [3459]. [c.482]

    Частица ионообменной смолы представляет собой агрегат больших молекул полимерного вещества, каждой из которых приданы основные или кислотные свойства. Поэтому можно рассматривать их как твердые высокополимерные кислоты и основания. [c.151]

    По сравнению с получением спиртов или карбонильных соединений, число методов синтеза простых эфиров весьма ограниченно. Поскольку в молекуле простого эфира нет пи подвижного водорода, ни двойных связей, он обладает наименьшей реакционноспособ-ностью по сравнению с указанными выше соединениями. В большинстве случаев простые эфиры не поддаются ни кислотному, ни щелочному гидролизу и устойчивы при действии как окислителей, так и восстановителей. Алифатические эфиры, однако, обладают неприятным свойством образовывать перекиси при хранении в контакте с воздухом. Наиболее опасными в этом отношении являются диоксан, тетрагидрофуран и диизопропиловый эфир. Для удаления перекисей из эфиров существует много способов. Недавно было предложено пропускать эфир через колонку, содержащую сильно основную ионообменную смолу дауэкс-1 [21. Однако наиболее эффективным методом удаления перекисей является пропускание эфира через колонку с окисью алюминия. Окись алюминия в колонке заменяют после того, как при смешении равных объемов элюата и смеси ледяной уксусной кислоты с конц. HI обнаруживают выделение свободного иода. [c.325]


    Поскольку ионообменные зерна и мембраны изготовляются из ионообменных смол, они обладают аналогичными химическими и физическими свойствами. Однако многие аспекты ионного обмена, важные для мембран, не имеют отношения к зернам, и наоборот. Принципы ионного обмена здесь обсуждаются в основном в той мере, в какой они относятся к электромембранным процессам. [c.30]

    Хроматография на ионообменных смолах возникла сравнительно недавно отчасти из-за того, что промышленное производство подходящих смол нельзя было начать, пока не были определены требования, предъявляемые к свойствам таких смол. В настоящее время доступен целый ряд смол это катионообменные смолы с сильно- или слабокислыми свойствами и анионообменные смолы с сильно- или слабоосновными свойствами. Областью их применения является вытеснительное проявление или проявительный анализ. Большинство смол применяют в виде шариков одинакового размера. Если смола не имеет форму шариков, то необходимо просеять ее, чтобы получить фракцию, содержащую частицы желательного размера. Перед набивкой в колонку смолу рекомендуется подвергать циклированию , т. е. последовательной обработке в стакане кислотой и щелочью. Набитую колонку необходимо регенерировать перед употреблением. Количество регенерирующей жидкости всегда зависит от скорости течения и от используемой смолы [16]. Для всех смол регенерирующая жидкость должна быть вытеснена из колонки прежде, чем начнется разделение. Для этого достаточно небольшого количества дистиллированной воды за промывкой можно следить по индикаторной бумаге. При работе со смолами основного характера должна отсутствовать двуокись углерода. Поскольку колонки ведут себя как фильтры, любое вещество, выделяющееся из раствора, будет осаждаться на колонке, ухудшая или даже останавливая течение жидкости. [c.313]

    МЕЛАМИН зHaNJ — бесцветные кристаллы, т. пл. 354 С малорастворим в воде, спирте. В большинстве органических растворителей нерастворим. Аминогруппы придают М. основные свойства. В промышленности М. получают из дн-циандиамида или из мочевины. М. применяют, главным образом, в производстве пластмасс, лаков, клеев, отличающихся высокой механической прочностью, малой электропроводностью, водо- и термостойкостью. В текстильной промышленности М. используется для изготовления не-мнущихся и безусадочных тканей в бумажной — для производства водонепроницаемой бумаги в деревообрабатывающей — для склеивания древесины, получения лаковых покрытий. Кроме того, М. применяется для приготовления ионообменных смол, дубильных веществ и др. [c.158]

    В последние годы исследователи обратились для получения более совершенных мембранных электродов к ионообменным смолам [2—4]. В основном для этой цели были использованы сульфосмолы, но эти электроды оказались мало избирательными по отношению к большинству катионов. С целью получения избирательно действующих мембранных электродов необходимо изучить ионообменные смолы с различными функциональными группами, поскольку между электродными и ионными свойствами смол можно ожидать вполне определенную связь. Например, смолы с карбоксильными группами должны проявлять избирательность по отношению к иону Водорода и к двухзарядным катионам по сравнению со щелочными ионами, сульфосмолы — к ионам бария, серебра и др. [c.144]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    О. Самуэльсон. Применение ионного обмена в аналитической химии. Издатинлит, 1955, (296 стр.). В книге изложены методы хроматографического анализа, основанные в значительной части на собственных исследованиях автора и его сотрудников. Приведен краткий исторический обзор применения неорганических и органических ионитов, описаны основные свойства ионообменных смол, рассмотрены теории ионного обмена и техника его применения в аналитической химии. Описаны примеры разделения и открытия ионов различных металлов, анионов, углеводородов, алкалоидов, ан гибио-тиков, витаминов и ряда других органических веществ. Описано применение метода для исследования растворов комплексных соединений. [c.489]


    Ионитовая мембрана, помещенная в электролизную ванну, действует как ионитный фильтр она проницаема только для ионов, имеющих заряд того же знака, что и у подвижных (обменных) ионов ионообменной смолы, из которых изготовлена мембрана. Различают два типа ионитовых мембран катиоиитовые и анионитовые. Первые из них пропускают через себя лишь катионы, вторые — анионы. Следует подчеркнуть, что ионитовые мембраны не требуют специальной регенерации. В табл. 6.10 представлены основные свойства отечественных ионитовых мембран. [c.217]

    В частности, даны полные сведения, касающиеся физических и химических свойств изобутилена, методов синтеза и анализа мономера. Предпочтение отдается последним достижениям, связанным с использованием ионообменных смол - катионных катализаторов для реакций изобутиленового сырья со спиртами как первой стадии получения высокочистого мономера и одновременно основной реакции получения алкилтретбутиловых эфиров - экологически чистых антидетонационных добавок к топливам. Проанализированы и обсуждены данные по кинетике и термодинамике реакций, оптимизации процессов. Расширены сведения о нетрадиционном способе получения изобутилена - термокаталитической деструкцией изобутиленсодержащих и других углеводородных полимеров (олигомеров), где параллельно решается проблема утилизации нестандартных продуктов. Дополнены ранее известные данные по некоторым химическим свойствам и лабораторным методам синтеза изобутилена, обсуждены промышленные варианты процессов. [c.377]

    Синтетические ионообменные смолы представляют собой высокомолекулярные соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Если эти функциональные группы имеют кислотный характер (как, например, сульфогруппы, карбоксильные или фенольные группы), то смолы обладают свойством катионообменников, т. е. обменивают ионы водорода этих групп на другие катионы. Если фиксированные функциональные группы в смолах обладают основными свойсгвами (первичные, вторичные аминогруппы, четвертичные основания), то они обменивают гидроксильные ионы оснований или анионы солей на другие анионы. В связи с этим процессы ионного обмена имеют много общего с химическими реакциями двойного обмена в растворах. Однако нерастворимость смол и большое количество функциональных групп, не в одинаковой мере доступных для диффундирующих внутрь пространственной сетки обменпняющихся ионов, делают этот процесс отличным от указанных реакций. [c.132]

    Мембраны для электродиализатора изготовляют в виде гибких листов прямоугольной формы или рулонов из термопластичного полимерного связующего и порошка ионообменных смол. В табл. 4.5 приведены основные свойства иониговых мембран, выпускаемых отечественной промышленностью. [c.155]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    Трудно или почти невозможно назвать такую область науки и техники, где бы не применялись методы сорбции и хроматографии. Химия, химическая технология, гидрометаллургия, теплоэнергетика, атомная промышленность, биология и биохимия, водоподготовка, фармацевтическая, пищевая промышленность И многие другие отрасли народного хозяйства пользуются сейчас этими мзтода-ми как основными методами разделения и очистки самых разных веществ. Наряду с постоянным совершенствованием свойств и расширением ассортимента сравнительно старых материалов, таких как окись алюминия, силикагель, цеолиты, активные угли, ионообменные смолы, диатомитовые носители и другие, в последние годы появилось очень много совершенно новых материалов, предназначенных для расширения возможностей хроматографической и сорбционной тех-, ники. Можно с уверенностью утверждать, что в настоящее время технология производства материалов для сорбции и хроматографии переживает революционный скачок. Развитие этой отрасли химической технологии происходит так бурно и широко, что порой сведения о новых материалах с большим запозданием доходят даже до тех, кому они предназначены, не говоря уже о работающих в смежных, даже очень близких областях науки и техники. [c.3]

    Сейчас на рынке имеются смолы с различной степенью поперечной сшивки одна из фирм производит иониты со степенью сшивки от 1 до 15% (через каждый 1%). Пеппер и Райхенберг [1] подробно изучили влияние степени поперечной сшивки содержание нижеследующих разделов заимствовано с их разрешения из наиболее интересных работ этих исследователей. Согласно их данным, найдено, что на многие, хорошо известные характеристики ионообменных смол заметно влияет степень поперечной сшивки. Систематическое изменение степени сшивки и исследование его влияния на свойства ионитов позволили довольно глубоко проникнуть в природу ионообменных явлений. Было сделано нрёдноложение. что поведение смолы зависит главным образом от ее влагосодержания. По-видимому, степень сшивки оказывает свое отчетливо выраженное влияние на свойства ионита в основном в результате того, что она определяет влагосодержание смолы. Хотя для образования по- [c.19]

    Ионообменный метод часто применяют для умягчения и обессоливания пресных вод. Этот метод основывается на свойстве ионитов обратимо обментшать подвижные ионы своих функциональных групп (чаще всего — водород или гидроксил) на ионные примеси воды. Огромное разнообразие ионообменных смол н широкий спектр их действия позволяют практически полностью выборочно удалять любые электролиты из водных растворов. Этот метод в основном поименяют в случае солоноватых вод с псхолным солесодержанием не свыше 2—3 г1л, в последние годы интенсивно изыскиваются [c.192]

    Указанные выше процессы былп изучены нам1 на катионите КУ-2, амфотерном ионите ВС и электронообменной гидрохинонформальдегид-ной смоле [9—11]. Цель настоящей работы заключалась в дальнейшем изучении процессов сорбции и особенно процессов десорбции комплексных тиосульфат-ионов серебра, поглощенных анионитами различной степени основности. Проблема полного извлечения серебра из производственных промывных вод кинокопировальной промышленности с помощью ионообменных смол до сих пор остается не решенной, несмотря на то что ее решение имеет большое народнохозяйственное значение. Это обусловлено в первую очередь своеобразием свойств тиосульфат-ионов серебра но сравнению с другими ионами (катионами) солей этого металла в растворах, а именно большими размерами и поливалентностью заряда этих анионов [Ад(8203)2] , [Ag(8203)3 , высокой устойчи-ностью к химическим превращениям в другую, более простую и удобную форму ионов для сорбции их ионитами и последующего вытеснения ич адсорбента элюентами (константа нестойкости [Ад(8203)2 равна 1-10- ). Возможность перехода тиосульфат-ионов серебра в присутствии ионов 804 и 8 - в нерастворимые сульфиды серебра иа анионитах чрезвычайно осложняет регенерацию адсорбента, хотя и позволяет концентрировать на анионитах большие количества серебра в указанной форме. [c.180]

    Все сказанное свидетельствует о том, что для гигиенической оценки ионитов решающую роль ттграют токсикологические исследования. Вместе с тем результаты данных исследований будут сравнительно малоэффективными без детальной характеристики химической природы, структуры, состава и свойств изучаемых полимеров. Это тем более необходимо, что в существующих стандартах или технических условиях, как правило, отсутствуют соответствующие показатели. Между тем достаточно подробная химическая характеристика дает возможность исследователю не только предвидеть основные особенности биологического действия ионита, ио и прийти к отрицательному заключению о допустимости его использования в пищевой промышленности и для водоподготовки. Последнее может, наиример, относиться к ионообменным смолам, в составе которых содержатся вещества, вызывающие ясно выраженные и характерные патологические изменения [7, 8]. [c.196]

    Содержание непрореагировавшего сырья в нейтрализованных продуктах сульфатирования производных спиртов, эфиров алкилоламидов, алкильных и алкиларильных эфиров определяют пропусканием этих продуктов в смеси растворителей через слой ионообменной смолы, обладающей кислотно-основными свойствами. Элюат несульфатированных веществ, которые не адсорбируются на ионообменной смоле, по мере выхода из колонки подают движущейся проволокой в испаритель, после удаления растворителей остаток подвергают пиролизу и продукты пиролиза в токе азота подают в пламенно-ионизационный детектор. [c.199]

    Ионообменная смола В1о<1еттгоШ с кислотно-основными свойствами (фирма В. Д. Н., Англия). [c.199]

    Для определения примесей в препаратах высокой чистоты во многих случаях необходимо предварительно отделить их от основной массы анализируемого материала и сконцентрировать. Концентрирование малых количеств ионов в аналитической химии успешно осуществляется при помощи обычных ионообменных смол [1—4], однако их используют главным образом тогда, когда, помимо концентрируемого элемента, в растворе нет сколько-нибудь значительных количеств других одноименно заряженных яонов. Чтобы выделить микропримесь в присутствии большого количества основного компонента, особенно с близкими свойствами, прежде всего требуется, чтобы ионит обладал высокой селективностью по отношению к ионам примесей. Кроме того, для последующего анализа существенно, чтобы поглощенный микрокомнонент можно было легко выделить из ионита нри помощи элюента, не мешающего его дальнейшему определению. Поскольку в настоящее время известно еще очень мало селективных ионообменных материалов, удовлетворяющих этим требованиям, число примеров применения ионного обмена для выделения и концентрирования микропримесей из сложных смесей в аналитических целях сравнительно невелико [5—8]. [c.336]

    Таким образом, исключительно высокая избирательность окисленного угля, зависящая, по-видимому, от особенностей его строения и свойств поверхности [16, 17], дает возможность проводить при помощи этого катионообменника самые разнообразные аналитические и препаративные разделения. Число подобных примеров нетрудно умножить, так как возможность эффективного концентрирования микропримесей (очистки) в основном определяется относительным положением разделяемых катионов в ряду адсорбируемости на окисленном угле. Если учесть при этом простоту получения окисленного угля, совершенно не сравнимую со сложным синтезом органических ионообменных смол, особенно комплексообразующих, легкость его регенерации, а также высокую химическую, термическую и радиационную устойчивость, то можно не сомневаться, что окисленный уголь должен представить большой интерес для химической практики. [c.344]

    Полученные данные показывают, что силикагель, модифицированный щелочью, не позволяет сохранить нативность кислот и фенолов в отличие от ионообменной хроматографии. В то же время ионообменная хроматография на макропористых анионитах требует значительных затрат на подготовку смолы и проведение процесса выделения. Этот фактор наряду с малой распространенностью макропористых анионитов сдерживает их широкое внедрение в практику. Более перспективны работы, направленные на модификацию силикагеля веществами, обладающими основными свойствами, но менее химически активными, чем щелочь. С целью уменьшения побочных реакций, катализируемых щелочью, были опробированы в качестве модифицирующих веществ калиевые и натриевые соли слабых кислот — угольной, фосфорной, кремниевой [19]. На основании данных тонкослойной и колоночной хроматографии модельных смесей установлено, что наиболее высокой обменной емкостью и селективностью к кислотам и фенолам обладает силикагель, модифицированный силикатом калия. Из табл. 4.5 видно, что применение такого сорбента позволяет обеспечить высокую степень извлечения кислот из нефти [20, 21]. [c.104]

    Как уже упоминалось, вследствие большого разнообразия стероидов невозможно привести общую методику приготовления образца. Тем не менее можно сделать несколько полезных замечаний. Поскольку большая часть стероидов является веществами нейтральными, можно рекомендовать использование распределения экстракта из природного объекта между органическим растворителем (как правило, толуолом, бензолом, хлороформом, хлористым метиленом, диэтиловым эфиром и этилацетатом) и водным раствором щелочи с целью удаления органических кислот и других кислотных продуктов, в тех случаях, когда органический экстракт содержит алкалоиды или другие примеси основного характера, полезна обработка экстракта разбавленной соляной кислотой. Однако при разделении между неполярным растворителем, например толуолом или хлороформом, и водным раствором сильной щелочи некоторые высокополярные нейтральные стероиды проявляют кислотные свойства [3]. К ним относятся экстрогены, имеющие слабокислый характер вследствие присутствия в них фенольного гидроксила, или желчные кислоты. В этом случае фильтрация образца через колонку, заиол-ненную ионообменной смолой, приводит к его обогащению [4, 5]. За исключением сложных эфиров стеролов и некоторых практически неполярных стероидов, сырые органические экстракты, содержащие стероиды растительного и в особенности животного происхождения, могут быть предварительно очищены перед вводом в колонку распределением экстракта между петролейным эфиром (или м-гексаном, -гептаном, а также другими углеводородами) и 90—95%-ным метанолом. Обычные стероиды остаются в полярной фазе, в то время как парафины, жиры и вышеупомянутые исключения — в углеводородном растворителе. В случае применения техники противоточного распределения обогащение более эффективно. [c.213]

    Созданию современной аналитической хроматографии аминокислот предшествовало два очень важных события — разработка методов получения химически гомогенных белков (школа Норт-ропа, середина 30-х годов [1]) и организация промышленного производства ионообменных смол с последующим развитием ионообменной хроматографии (50-е годы). В промежуточный период были разработаны адсорбционная и распределительная хроматографии аминокислот (на бумаге и на колонках с сорбентами), оказавшиеся, однако, непригодными для решения практических задач. Так колоночная хроматография не нашла применения, главным образом, из-за несовершенства имеющихся в то время сорбентов, в основном природного происхождения. Тем не менее благодаря тщательному подбору условий анализа В. Стейну и С. Муру, лауреатам Нобелевской премии за 1972 г., удалось добиться вполне удовлетворительного разделения смеси аминокислот [2]. Однако этот метод оказался слишком трудоемким и также не нашел широкого применения, поскольку требовалась тщательная стандартизация крахмала, хроматографические свойства которого зависят от источника выделения и метода получения. [c.305]

    Ионообменные смолы в органической среде ведут себя как адсорбенты кислотного или основного характера. Как известно, на них происходит как физическая, так и химическая адсорбция. Например, на ацетатной форме амберлита А-29 происходит физическая адсорб-шя полярных соединений типа пиррола и фенола из растворов углеводородов. Эти растворенные вешества могут быть вымыты со смолы полярными растворителями, такими, как пиридин или метанол. Кислоты на этой смоле хемосорбируются, и для их элюирования требуются кислотные растворители. Б свою очередь сильнокислотный катионит амберлит А-15 хемосорбирует азотистые основания из растворов в углеводородах, а десорбировать их можно, только используя растворители основного характера. Селективность смолы можно значительно повысить, если использовать форму, в которой она будет образовывать комплекс (лиганд) с растворенным веществом /36/. Например, катиониты в Ag+., Си или формах используют для разделения аминов и карбоксильных кислот, Ag форму используют также для отделения соединений с двойными олефиновыми связями. Элюирование проводят агентом, комплексообразующие свойства которого слабее, чем у веществ, которые надо разделить. Вытесняющее проявление выполняется с помощью реагента с более сильными комплек-сообразуюшими свойствами. [c.87]

    В последнее время в практике применения ионообменных смол все шире и шире используют неводные растворители [1]. Несмотря на это влияние растворителей на ионный обмен систематически не исследовалось. Мерой силы ионитов как кислот являются константы обмена Н+-ионов на катионы, мерой силы анионитов — константы обмена 0Н--И0Н0В на анионы. В зависимости от растворителя одно и то же вещество может быть сильным и слабым электролитом, или нейтральным веществом, проявлять кислые или основные свойства. [c.83]


Смотреть страницы где упоминается термин Ионообменные смолы и их основные свойства: [c.105]    [c.169]    [c.70]    [c.259]    [c.18]    [c.28]    [c.42]    [c.436]    [c.92]    [c.95]    [c.258]    [c.62]    [c.433]   
Смотреть главы в:

Радиохимия и химия ядерных процессов -> Ионообменные смолы и их основные свойства




ПОИСК





Смотрите так же термины и статьи:

Ионообменные свойства

Ионообменные смолы

Смолы свойства



© 2025 chem21.info Реклама на сайте