Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы ионообменным методом

    Метод регулировки pH во время разделения редкоземельных элементов ионообменной хроматографией [1899]. [c.317]

    Торий может быть отделен от сопутствующих ему (в монаците и в большинстве других ториевых минералов) редкоземельных элементов различными методами. До разработки методов экстракционного и ионообменного разделения этих смесей использовались главным образом методы фракционного осаждения фосфатов и гидроокисей , а также методы, основанные на способности тория образовывать растворимые карбонатные и оксалатные комплексы. [c.324]


    В заключение необходимо отметить широкое применение ионообменной адсорбции для извлечения и разделения ионов. Ионный обмен применяется для умягчения и очистки воды, извлечения ценных компонентов, например урана, золота, серебра. Сейчас нет производства по переработке урановых руд, в котором пе применялась бы ионообменная адсорбция. Ионный обмен используется для разделения редкоземельных элементов, что позволило получать нх в больших количествах и с высокой степенью чистоты. Раньше для этой цели применяли перекристаллизацию, производительность которой несравненно меньше. Ионообменная адсорбция является одним из важных методов в аналитической химии. [c.172]

    Благодаря большим достижениям в синтезе ионообменных смол их стали применять далеко за пределами первоначальной области их использования — в водоочистке. Иониты применяются всюду, где требуется удаление, выделение и концентрирование ионов в растворах. Иониты используются в энергетической, химической, пищевой, фармацевтической, металлургической и в ряде других от--раслей промышленности. Ионообменные смолы применяются для разделения ионов, которые до настоящего времени не могли быть разделены с помощью других методов. В частности, их применяют Для разделения редкоземельных элементов, продуктов распада радиоактивных веществ и т. Дг Широкое применение иониты находят при изготовлении чистых реагентов. [c.481]

    Методом ионообменной хроматографии можно разделять редкоземельные элементы, используя различия констант нестойкости их комплексных соединений [88.1. [c.145]

    Рассмотренные три способа не могут дать удовлетворительного результата, если ионы очень мало различаются по свойствам и поглощаются ионитом почти одинаково. В этом случае эффективного разделения можно достичь, применяя метод ионообменной хроматографии с комплексообразователем, дающим с разделяемыми ионами комплексные соединения различной прочности. -Рассмотрим суть этого метода на примере разделения ионов редкоземельных элементов с применением лимонной кислоты в качестве комплексообразователя. Разделяемым катионам дают поглотиться в верхней части катионитовой колонки (сульфокатионит в ЫН4- или Н-формах). Затем через колонку пропускают растворы нитратного буферного раствора (лимонная кислота + гидроксид аммония), имеющие разные pH. При этом поглощаемые катионы образуют нитратные комплексные отрицательно заряженные анионы, прочность которых (и, следовательно, вымывание из катионитовой колонки) определяется pH и концентрацией цитратного буферного раствора. Так создаются условия для дифференциального вымывания поглощенных катионов. Чем прочнее образующийся комплексный анион, тем легче вымывается катион из колонки. [c.690]


    Методом ионообменной хроматографии можно разделить на катионите близкие по свойствам редкоземельные элементы, используя различия констант нестойкости их комплексных соединений при разных значениях pH. В основе разделения их с помощью ионообменной хроматографии лежит различие в свойствах их комплексных соединений, поскольку именно в комплексных соединениях наиболее полно проявляются и находят отражение тонкие различия в величинах ионных радиусов и строении электронных оболочек. [c.208]

    Ионный обмен как метод разделения. VI. Исследование на ионообменной колонке относительных эффективностей различных комплексообразователей при разделении легких редкоземельных элементов [1932]. [c.319]

    Ионообменный метод отделения тория от редкоземельных элементов [1934]. [c.319]

    Усовершенствованный метод эксплуатации ионообменных колонок при разделении редкоземельных элементов [1935]. [c.319]

    Усовершенствованный ионообменный метод разделения макроколичеств редкоземельных элементов [1943]. [c.319]

    Ионный обмен как метод разделения. III. Исследование равновесия реакций комплексных соединений редкоземельных элементов с синтетическими ионообменными смолами [3339]. [c.477]

    Интенсивное развитие метода ионообменной хроматографии, являющей ся, наряду с распределительной, вариантом хроматографического метода М. С. Цвета, началось в связи с необходимостью разделения смесей осколочных продуктов, в основном состоящих из редкоземельных элементов и их химических аналогов — трансурановых элементов, получаемых при облучении тяжелых ядер нейтронами или многозарядными ионами. ОднакО вскоре была показана целесообразность распространения метода ионообменной хроматографии на препаративное разделение природных смесей р. з. э. Это направление оказалось столь перспективным, что в настоящее время ионообменная хроматография является незаменимым методом получения индивидуальных р. з.э. высокой чистоты в лабораторных и производственных масштабах. [c.284]

    Классическим примером использования такого подхода является успешное разделение ионов редкоземельных элементов (лантаноидов). До того времени, как эти элементы впервые были разделены ионообменной хроматографией, единственный применимый метод разделения и очистки редкоземельных элементов заключался в утомительном дробном осаждении их, проводимом десятки и даже сотни раз. Хотя предполагалось, что метод осаждения дает чистые соединения редкоземельных элементов, тщательное исследование этих осадков современными физическими аналитическими методами часто показывало, что на самом деле они оказывались относительно загрязненными. Если раствор, содержащий ионы редкоземельных элементов Ьа +, Се - ", ЕиЗ+, Од +, ТЬ +, Ег +, Тт - -, или вводят в ионообменную колонку, все они сначала сорбируются на фазе смолы. Коэффициенты селективности катионов редкоземельных элементов очень близки, так как все они имеют равные заряды (-ЬЗ) и почти одинаковые ионные (сольватированные) радиусы. Поэтому разделить эти катионы элюированием с колонки раствором обычной соли, такой как хлорид натрия или аммония, невозможно. Вместе с тем, если в элюент добавить цитраты, то эти ионы довольно четко разделяются цитрат образует с каждым катионом комплексы различной прочности, так что редкоземельные элементы можно элюировать по одному с колонки и собирать в различные приемники. Однако разделение все еще представляет определенную трудность, так как для полного элюирования ионов может потребоваться около 100 ч. [c.593]

    Важной областью применения элюентной хроматографии является выделение индивидуальных примесей редкоземельных элементов (РЗЭ) при анализе лантаноидных препаратов. Затруднения в приложении к анализу разработанных ионообменных методов разделения РЗЭ, например, элюентной комплексообразовательной хроматографии на катионитах [715], заключаются в несоизмеримости количеств примесей и основы, что предопределяет неполноту разделения. В результате получают фракции элюата, только обогащенные примесями относительно основы. [c.316]

    Выбор группы методов концентрирования для конкретного анализируемого чистого вещества, с одной стороны, зависит от свойств элементов основы и примесей. Например, концентрирование при анализе щелочных и щелочноземельных металлов проводится, в основном, путем группового выделения примесей (экстракцией, ионным обменом, соосаждением с коллектором и пр.). Для элементов, расположенных в середине Периодической системы, и переходных металлов в высших степенях валентности характерно образование летучих соединений с ковалентным Типом связи и для целей концентрирования при анализе названных элементов и их соединений часто могут быть использованы методы испарения (сублимации) основы. Переходные металлы (с достраивающимися электронными -оболочками) склонны к комплексообразованию в растворах и для их отделения перспективны экстракционные и ионообменные методы. Разделения в группах редкоземельных и актинидных элементов (с достраивающимися /-оболочками) требуют использования высокоэффективных хроматографических методов, в частности, метода ионообменной хроматографии. С другой стороны, важное значение для выбора метода концентрирования имеют физико-химические свойства анализируемого соединения (летучесть, плавкость, растворимость). Так, соединения, которые с трудом переводятся в раствор, следует подвергать обогащению методами испарения или направленной кристаллизации. Те же методы, не связанные с химической обработкой пробы, если они могут обеспечить концентрирование нужных примесей, следует применять и при анализе прочих чистых соединений. [c.319]


    При выборе определенной соли для дробной кристаллизации [252—254], кроме приведенных уже выше общих положений, принимают во внимание также имеющиеся в распоряжении количества и количественные соотношения. При наличии больших количеств веществ рекомендуется проводить фракционирование с довольно легкорастворимыми солями, в случае малых количеств предпочитают использование более труднорастворимых солей. Часто применению определенного способа препятствует также стоимость реактивов. Естественно, например, что из редкоземельных элементов наиболее распространенные Ьа, Рг, N(1 или V легче получить в чистой форме, чем очень редкие, потому что первые можно выделять с невысоким выходом. Еще в недалеком прошлом примерно количественный выход и одновременно высокая степень чистоты редкоземельных элементов были достигнуты при выделении Се, Ей, УЬ, 8с [252, 253] все лантаниды были получены в достаточном количестве только с введением ионообменного метода. [c.226]

    Ввиду сложности спектров редкоземельных элементов и обилия в них молекулярных полос следует заключить, что метод фотометрии пламени может быть легко использован для анализа лишь при наличии в растворе одного или небольшого числа элементов. В последнем случае требуется отсутствие наложения на полосу или линию определяемых элементов линий или молекулярных полос других элементов. При наличии в растворе всего двух элементов, что может иметь место, например, при разделении лантанидов при помощи ионообменной хроматографии, рекомендуется введение поправки на излучение другого элемента по специально построенной градуировочной кривой [c.270]

    НОЙ хроматографии на протяжении последних 15 лет. В этой связи особый интерес представляют исследования по разделению продуктов радиоактивного распада, выполненные по так называемому Плутониевому проекту [И]. Среди продуктов распада имеются различные редкоземельные элементы. С помощью ионообменных методов iix удалось отделить друг от друга. Метод ионообменной хроматографии позволяет осуществить и многие другие разделения весьма близких по своим свойствам элементов. [c.25]

    Это последнее свойство сделало возможным отделение америция от редкоземельных элементов при помощи циклического процесса, хотя в настоящее время данный способ вытеснен ионообменными методами .  [c.180]

    Ионообменный метод разделения. Метод ионообменной хроматографии используется для разделения элементов с близкими химическими свойствами, например, редкоземельных, трансурановых, щелочноземельных и т. п. В этом методе удачно сочетаются универсальность и эффективность с простотой проведения опытов. Полнота разделения обусловлена многократным повторением актов адсорбции и десорбции. [c.169]

    При некоторых типах ядерных реакций (например, при облучении ядер элементов частицами высоких энергий и процессах деления тяжелых ядер) могут образоваться очень сложные смеси радиоактивны изотопов ряда элементов. Далее требуется их разделение и выделение в чистом виде как для изучения происходящих при этом процессов, так и для изучения свойств самих радиоактивных изотопов или использования их в качестве радиоактивных индикаторов. Приемы аналитической химии, используемые с учетом специфических условий (обычно приходится иметь дело с микроколичествами образующихся радиоактивных элементов), позволяют в ряде случаев проводить такие разделения с применением изотопных носителей или без них. Однако некоторые группы очень близких по свойствам элементов (редкоземельных, трансурановых и др.) обычными химическими методами разделяются весьма трудно. За последнее время эти задачи были успешно решены с помощью ионообменной хроматографии. Кроме того, оказалось, что часто ионообменными методами можно быстрее, проще и чище выделять и другие элементы, для которых обычно используются химические методы выделения. Поэтому в настоящее время разрабатываются хроматографические методы выделения многих элементов периодической системы. Преимущество этих методов состоит также в том, что в них отсутствуют явления соосаждений, захватов и т. д., причем чистые препараты можно получать в одном цикле. [c.384]

    Благодаря применению ионообменных методов в настоящее время стали общедоступными чистые индивидуальные редкоземельные и некоторые другие редкие элементы. [c.398]

    Л. Н. Москвин, Б. К. Преображенский и Л. Н. Ржани-цыиа [130] колоночным методом распределительной хроматографии, используя в качестве гидрофильного носителя ионообменную смолу, успешно разделили катионы ртути, цинка и кадмия, а Э. А. Чувелева, П. П. Назаров и К. В. Чмутов [131] — некоторые редкоземельные элементы. [c.176]

    Сорбционные методы. Для очистки от бора, фосфора, мышьяка и т. п. примесей предложено сорбировать их либо из жидкого Ge U, либо из его паров на активированном угле, силикагеле, ионообменных смолах, цеолитах, окислах алюминия, железа, титана, редкоземельных элементов и др. Например, в [100] рекомендуется очищать пары на сложном трехслойном сорбенте слой инертного носителя, пропитанного о-нитроанизолом (для удаления хлоридов фосфора), слой окисленного активированного угля СКТ (для поглощения трихлорида мышьяка) и слой силикагеля A M (для поглощения хлоридов металлов). [c.196]

    Классическая ионообменная хроматография проводится на пористых нонооб-менниках, синтезированных из сополимера стирола и дивинилбензола. Изначально она была разработана для разделения химически очень близких редкоземельных элементов с помо1цью катионообменников. Определение ионов, собранных по фракциям, осуществляли титриметрическими методами. [c.283]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    В ионообменном методе разделения смесь хлоргщов редкоземельных элементов подвергают бомбардировке не 1тронами, вследствие чего образуются радиоактивные изотопы. Смесь затем растворяют, прибавляя в раствор цитратный буфер, и пропускают через колонку с катионитом. Колонку непрерывно промывают новыми порциями буферного раствора и вытекающую жидкость направляют мимо окна счетчика Гейгера в приемник, собирающий жидкость фракциями. [c.272]

    Известно, что редкоземельные, а также трансурановые элементы разделить обычными химическими методами весьма затруднительно. Для разделения суммы редкоземельных элементов в индикаторных количествах с успехом используется ионообменный метод при этом в качестве элюирующего вещества чаще всего применяются растворы лактата или оксибутирата аммония. [c.97]

    Основные научные работы посвящены исследованию редкоземельных элементов. Разработал (1940-е — начало 1950-х) способ выделения индивидуальных редкоземельных элементов с помощью ионообменной хроматографии. Благодаря этому способу редкоземельные элементы стали сравнительно доступными и дешевыми материалами, Совместно с Льюисом разработал (1933) методы получения тяжелой воды. Изучал энергетические уровни ионов редкоземельных элементов. Во время второй мировой войны руководил работами по получению урана высокой степени чистоты. Предложил использовать кальций и позднее магний для восстановле1шя четырехфтористого урана в металлический уран. Разработал промышленный процесс производства высокочистого металлического торил, а также церия и иттрия. Использовал ионообменную хроматографию для разделения изотопов а,зота (получил 200 г азота-15 со степенью чистоты 99,8%). [332J [c.474]

    Разделение редкоземельных элементов на жидких ионообменниках. I. Исследование ионообменных свойств динонилнафталинсульфокислоты методом бумажной хроматографии с обращенными фазами. [c.525]

    Влияние различных элюентов и условий эксперимента на разделение различных элементов группы иттрия исследовано Д. И. Рябчиковым с сотрудниками [75]. Изучалось также выделение элементов другими методами в сочетании с ионообменной хроматографией. Обширный обзор по разделению редкоземельных элементов опубликовали Стивенсон и Нервик [86 ]. Сравнение различных элюентов дано В. К. Преображенским [67], [c.324]

    Классическая схема группового отделения редкоземельных элементов от других продуктов ядерного расщепления была разработана с связи с так называемым Плутониевым проектом . Эта схема была разработана для препаративных целей, но она представляет интерес и с аналитической точки зрения. Следует отметить, что для препаративных целей предложена новая схема, основанная на сочетании ионообменного и других способов разделения (см., например, [77]). Применяемые аналитические методы основаны на том, что редкоземельные элементы хорошо поглощаются катионитами из солянокислого раствора. Шуберт, Рассел и Фароби [78, 79 ] вы -делили иттрий из мочи, подкисленной до 0,1М НС1. Подкисление препятствует выпадению осадка и разрушает комплексы иттрия с компонентами мочи. В начале одно- и двухзарядные катионы элюируют соляной кислотой (например, 0,8М [27]). Иттрий элюируется последним 6Ж соляной кислотой. Определение иттрия в костях п в яичной скорлупе основано на том же принципе [27]. [c.326]

    Большинство редкоземельных элементов плохо поглощается анионитами из азотнокислых растворов (рис. 15. 5). Распространенный метод спектрального определения скандия и редкоземельных элементов в тории основан на ионообменном ра.зделении в 8М HNOj, [18 ]. В этой среде торий поглощается анионитом, а большинство редкоземельных элементов и скандий не поглощаются. После стадии поглощения через колонку пропускают 8М HNOg для вытеснения оставшегося раствора. Следует избегать длительного пропускания кислоты, чтобы предотвратить элюирование тория. В четырехвалентном состоянии церий ведет себя подобно торию и поэтому может быть также легко отделен от других редкоземельных элементов. Во избежание восстановления церия (IV) разделение выполняют в присутствии бромата [50]. [c.328]

    Разделение суммы всех элементов периодической системы ионообменным методом в одном цикле невозможно, поэтому необходимо предварительное разделение элементов на группы. Такое разделение может быть выполнено общепринятыми аналитическими методами. В ряде случаев можно пользоваться специальными методами для отделения некоторых групп элементов. Например, удобно отделяются редкоземельные элементы, образующие нерастворимые фториды, оксалаты и гидроокиси цирконий и гафний можно отделить в виде BaZr(Hf)F6 после осаждения фторидов редкоземельных элементов. Некоторые группы элементов можно выделить экстракционными или ионообменными методами и т. д. [c.400]


Смотреть страницы где упоминается термин Редкоземельные элементы ионообменным методом: [c.79]    [c.113]    [c.531]    [c.138]    [c.17]    [c.283]    [c.289]    [c.163]    [c.303]    [c.321]   
Практическое руководство по неорганическому анализу (1966) -- [ c.628 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.574 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте