Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол молекулярные орбитали

Рис. 13-26. Диаграмма энергетических уровнен шести делокализованных молекулярных орбиталей бензола, изображенных на рис. 13-27. К этим уровням применим общий квантовомеханический принцип, согласно которому чем больше пространство, доступное для движения частицы, тем ниже и ближе друг к другу располагаются ее энергетические уровни. Именно по этой причине наблюдается квантование энергии электрона в атоме водорода, но не удается заметить квантования энергии бейсбольного мяча во время игры на стадионе. Масса бейсбольного мяча и объем, в котором он может перемещаться, столь велики, что его квантовые энергетические уровни располагаются практиче- Рис. 13-26. <a href="/info/18092">Диаграмма энергетических</a> уровнен шести делокализованных молекулярных орбиталей бензола, изображенных на рис. 13-27. К этим уровням применим общий квантовомеханический принцип, согласно которому чем больше пространство, доступное для <a href="/info/221290">движения частицы</a>, тем ниже и ближе друг к другу располагаются ее энергетические уровни. Именно по этой причине наблюдается <a href="/info/12558">квантование энергии</a> электрона в атоме <a href="/info/1581">водорода</a>, но не удается заметить <a href="/info/12558">квантования энергии</a> бейсбольного мяча во время игры на стадионе. Масса бейсбольного мяча и объем, в котором он может перемещаться, столь велики, что его квантовые энергетические уровни располагаются практиче-

Рис. 13-25. Шесть полностью делокализованных молекулярных орбиталей бензола, образуемых шестью 2р-орби-талями атомов углерода. Пунктирные линии указывают узловые плоскости волновых функций, отвечающие нулевой электронной плоскости, а знаки плюс и минус относятся к значениям волновых функций по разные стороны от узловых плоскостей. Чем больше число узловых поверхностей у волновой функции, тем выше ее энергия. Все шесть молекулярных орбиталей имеют по узловой плоскости, совпадающей с плоскостью рисунка напри- Рис. 13-25. Шесть полностью делокализованных молекулярных орбиталей бензола, образуемых шестью 2р-орби-талями атомов углерода. Пунктирные линии указывают <a href="/info/68459">узловые плоскости</a> <a href="/info/2419">волновых функций</a>, отвечающие нулевой электронной плоскости, а знаки плюс и минус относятся к значениям <a href="/info/2419">волновых функций</a> по разные стороны от <a href="/info/68459">узловых плоскостей</a>. Чем больше число <a href="/info/622322">узловых поверхностей</a> у <a href="/info/2419">волновой функции</a>, тем выше ее энергия. Все шесть <a href="/info/1199">молекулярных орбиталей</a> имеют по <a href="/info/68459">узловой плоскости</a>, совпадающей с плоскостью <a href="/info/1073543">рисунка</a> напри-
    Представление о резонансе часто используют для качественного описания строения молекул, но по мере усложнения структуры (скажем, при переходе от бензола к нафталину, пиридину и т. п.) количественные расчеты валентных схем становятся все более затруднительны. Поэтому для решения волновых уравнений чаще применяют другой метод, метод молекулярных орбиталей. Если с точки зрения этого метода качественно рассмотреть молекулу бензола, то можно видеть, что каждый атом углерода, связанный с тремя другими атомами, использует 5р -орбитали для образования а-связей, так что все 12 атомов лежат в одной плоскости. Кроме того, каждый атом углерода имеет еще р-орбиталь, которая может в равной мере перекрываться с двумя соседними р-орбиталями. Перекрывание шести таких орбиталей (рис. 2.1) дает шесть новых орбиталей, три из которых, связывающие (они показаны на рис. 2.1), называются я-орбиталями. Все три я-орбитали занимают примерно одинаковое пространство, одна из них имеет самую низкую энергию, а две другие являются вырожденными. Каждая орбиталь имеет узловую область, которая является плоскостью кольца, и разделяется иа две части, расположенные над плоскостью и под ней. Две высокоэнергетические орбитали (рис. 1, б и е) имеют еще другую узловую область. Шесть электронов, образующих тороидальное облако, называют ароматическим секстетом. Порядок связи углерод — углерод, вычисленный по методу молекулярных орбиталей, составляет [c.48]

    Структуры бензола и других соединений, которые не могут быть правильно представлены классическими льюисовскими формулами, с успехом описываются не только в рамках метода молекулярных орбиталей, но и с помощью метода резонанса. Сущность этого метода заключается в том, что действительная структура соединения описывается с помощью двух и более так называемых резонансных или граничных структур, ни одна из которых не соответствует в точности реальной структуре. Таким образом, реальная структура лишь сходна с резонансными структурами, и главным образом с той из них, которая обладает наименьшей энергией. Резонансные структуры описываются классическими льюисовскими формулами. [c.68]


    Существует, однако, иной подход к описанию сложных молекул, основанный на использовании локализованных двухатомных молекулярных орбиталей. В данной главе мы уделим внимание главным образом рассмотрению теории локализованных связей, так как она дает простую основу для обсуждения многих свойств молекул в невозбужденном состоянии, особенно геометрического строения молекул. Теория делокализованных молекулярных орбиталей очень удобна для обсуждения я-связывания в молекулах, подобных бензолу, которые при использовании льюисовых представлений требуют для своего описания две или большее число резонансных структур. Поэтому л-связывание в бензоле будет рассмотрено нами как пример применения теории делокализованных молекулярных орбиталей. [c.551]

    Молекулы типа бензола, С Н , содержащие много связанных между собой ненасыщенных углеродных атомов, поддаются лучшему описанию при помощи делокализованных я-орбиталей, которые конструируются из 2р-орбиталей на связанных друг с другом sp -гибридизованных атомах углерода. Электроны на этих делокализованных я-молекулярных орбиталях не образуют обычных двухатомных связей скорее они распределены по всей молекуле. [c.595]

    Способность молекул СаН,, QH4 и ряда других к л-дативному и я-акцепторному взаимодействию обусловлена наличием в этих молекулах подходящих по условиям симметрии заполненных п-связывающих и свободных я-разрыхляющих молекулярных орбиталей. Как указывалось ранее (стр. 73), в молекуле бензола 2рг-электроны шести атомов углерода образуют нелокализованную я-связь. Согласно методу молекулярных орбиталей этому представлению отвечает возникновение из шести атомных р -орба-талей шести молекулярных я-орбиталей, три из которых оказываются связывающими, три другие — разрыхляющими  [c.128]

    В некоторых случаях молекулярные орбитали образуются не из двух, а из нескольких атомных орбиталей. Так, в молекуле бензола шесть р-электронов образуют шесть молекулярных орбиталей, которые составляют единую систему и не могут рассматриваться как три пары орбиталей. Именно эта единая система из шести электронов обусловливает особые ароматические свойства бензола и его производных. Такие системы молекуляр[1ых орбиталей называют многоцентровыми. В молекуле ВаН шесть валентных электронов двух атомов В и шесть валентных электронов шести атомов Н обеспечивают соединение 8 атомов, т. е. образование 7 связей. [c.11]

    Ограниченность теории локализованных орбиталей обнаруживается при попытке объяснить строение молекулы бензола. Подобно тому как не удается найти удовлетворительную льюисову структуру для молекулы О2, нельзя дать удовлетворительное описание молекулы С(,Н в рамках теории локализованных молекулярных орбиталей. [c.571]

Рис. 52. Граничные поверхности молекулярных орбиталей бензола Рис. 52. <a href="/info/69369">Граничные поверхности</a> <a href="/info/1199">молекулярных орбиталей</a> бензола
    Объяснение ароматичности было впервые. дано Хюккелем на основе теории молекулярных орбиталей. Единая система из 30 валентных электронов бензола приближенно подразделяется по симметрии на систему а- и л-электронов Ядра молекулы образуют плоский ске- [c.115]

Рис. 44. Вид локализованных я-молекулярных орбиталей для молекул бензола и нафталина. Непрерывные линии — положительные части МО, пунктирные — отрицательные части МО, точками показаны узловые линии МО Рис. 44. Вид локализованных я-<a href="/info/1199">молекулярных орбиталей</a> для <a href="/info/1415988">молекул бензола</a> и нафталина. Непрерывные линии — положительные части МО, пунктирные — отрицательные части МО, точками показаны узловые линии МО
    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Подгонка протонных контактных сдвигов должна давать некоторую уверенность в волновых функциях, полученных в расчетах по методу МО. Если это условие выполняется, то исходя из результатов определения контактных сдвигов можно сделать некоторые выводы [20] относительно связывания, например 1) расстояние между молекулярными орбиталями в2д И а1д в комплексах бис-бензолов больше, чем в комплексах бис-циклопентадиена, что говорит о большем обратном связывании в первом случае 2) степень электронной делокализации по МО не обязательно связана с рассчитанными порядками связей, поэтому по величине контактного сдвига нельзя судить о стабильности 3) а-МО цикла играют важную роль в связывании в обоих типах комплексов, 4) 4 -и 4р-орбитали металла характеризуются значительными порядками свя- [c.181]


    Так как валентный штрих в методе локализованных пар сопоставляется с локализованной парой электронов, то приведенным двум формулам Кекуле соответствуют по меньшей мере два разных распределения электронной плотности. Но для молекулы в стационарном состоянии существует одно-единственное распределение. Поэтому в методе валентных связей реальное распределение электронной плотности молекулы бензола надо представить как наложение по меньшей мере двух распределений локализованных пар, а для более точной картины—пяти распределений. Это значительно усложняет метод, не облегчая восприятия реальности. Для более сложных молекул число используемых при их описании валентных схем стремительно возрастает. Метод полностью утрачивает преимущества наглядности, а в расчете молекулярных свойств становится менее удобным, чем метод молекулярных орбиталей. [c.58]

    Это, конечно, до известной степени формальный прием, но он позволяет составить представление о фактическом распределении электронной плотности я-электронов молекулы. Так, оказывается, что в бензоле, этилене, бутадиене значения Q одинаковы для заполненных молекулярных орбиталей и равны единице, но в гетероциклических соединениях для различных атомов заряды л-электронного облака неодинаковы. Знание электронных зарядов имеет большое значение для вычисления момента диполя молекулы, так как он складывается из момента, вызванного поляризацией а-связей, и момента, соответствующего распределению я-электронов. [c.122]

    АРОМАТИЧЕСКИЕ СИСТЕМЫ - циклические соединения, имеющие общую для всех атомов системы стойкую замкнутую молекулярную орбиталь, образованную я-электронами. Название ароматический происходит от названий соединений бензольного ряда, среди которых были найдены вещества с приятным запахом (ароматическим), например бензойный и коричный альдегиды, ванилин. Затем понятие А. с. было перенесено на все соединения, содержащие одно или несколько бензольных ядер, т. е. г роизводные бензола, нафталина, антрацена, фенантрена и др. [c.30]

    Представление об электронной структуре бензола тесно связано сего геометрическим строением. Плоская координация связей с валентными углами 120 свидетельствует в пользу существования зр -гибридных орбиталей на атомах углерода. Таким образом, молекула бензола представляет собой плоский скелет из а-связей. В перпендикулярной плоскости остаются облака шести р-электро-нов, перекрывание между которыми дает п-связи. Шесть чистых р-орбиталей взаимодействуют между собой с образованием шести молекулярных орбиталей, три из которых оказываются связывающими, а три разрыхляющими [c.197]

    Например, в молекуле бензола шесть параллельно ориентированных р-орбиталей у каждого из шести атомов углерода кольца образуют единую систему из шести шести центровых молекулярных орбиталей, три из которых заняты в основном состоянии тремя парами электронов. Иными словами, в бензоле не образуется трех пар молекулярных орбиталей, отвечающих я-связи в структуре (а), а происходит полная делокализация электронов по кольцу углеродных атомов, и структуру правильнее изобразить в виде (б) [c.73]

    Однако в действительности стандартная теплота образования парообразного бензола равна лишь 82,9 кДж. Отсюда следует, что более стабильной должна быть другая структура, образование которой из атомов сопровождается большим выделением теплоты. Это — молекула с делокализованными молекулярными орбиталями. [c.87]

    Энергии шести орбиталей бензола можно рассчитать по методу Хюккеля с помощью двух величин, а и р. Величина а соответствует количеству энергии, которой обладает изолированная 2р-орбиталь до перекрывания, а величина р (называемая резонансным интегралом) является единицей энергии, выражающей степень стабилизации за счет я-орбитального перекрывания. Отрицательная величина р соответствует наличию стабилизации, и энергии шести орбиталей (от низшей к высшей) выражаются следующим образом а + 2р, а + р, а + р, а—р, а—р и а—2р [14]. Полная энергия трех заселенных орбиталей выражается как 6а + 8р, так как на каждой орбитали имеются по два электрона. Энергия обычной двойной связи соответствует величине а + р, так что структуры 1 или 2 имеют энергию 6а + бр. Отсюда энергия резонанса молекулы бензола выражается величиной 2р. К сожалению, не существует удобного способа расчета величины р по методу молекулярных орбиталей. Часто для бензола приводится величина около 18 ккал/моль, что составляет половину энергии резонанса, вычисленной по теплотам сгорания или гидрирования. [c.51]

    Метод валентных связей, наглядно иллюстрируя образование и структ) у различных многоатомных частиц, не всегда объясняет свойства вещества, в частности магнитные. Некоторые специфические связи между атомами (такие, как в молекуле бензоЛа или в металлических кристаллах) по этому методу представляются слишком упрощенно. Эти вопросы нашли объяснение с позиций метода молекулярных орбиталей, который позволяет не только описывать, но и количественно рассчитывать характеристики связей. [c.66]

    Энергия резонанса. Установлено, что освобождающаяся при окислении бензола до диоксида углерода и воды энергия много меньше вычисленной для горения гипотетического циклогекса-1,3,5-триена (другими словами, бензола Кекуле ). Дефицит энергии в 150 кДж/моль может быть отнесен на счет энергии, высвобождающейся при образовании из трех изолированных двойных связей циклических делокализованных молекулярных орбиталей, описанных выше. Эта выделившаяся энергия, так называемая энергия резонанса, обусловливает отсутствие определенного типа химического поведения, характерного для ненасыщенной молекулы. Любая реакция, в результате которой происходит разрушение циклических молекулярных орбиталей, требует возврата выделившихся 150 кДж/моль и является вследствие этого энергетически невыгодной. [c.49]

    Молекула нафталина — плоская и все ее 10 я-электронов в соответствии с правилом Хюккеля располагаются на связывающих молекулярных орбиталях, занимая их полностью. Экспериментально найденная энергия сопряжения нафталина составляет около 255 кДж на моль, и если ее пересчитать на один я-электрон, то окажется, что она примерно такая же, как и для бензола — 25—26 кДж. Тем не менее нафталин значительно менее устойчив и более реакционноспособен, чем бензол. Объясняется это тем, что лимитирующим этапом большей части реакций ароматических соединений является образование промежуточного продукта присоединения реагента — а-комплекса (см. гл. 2). В случае бензола образование этой частицы идет с разрушением ароматического секстета электронов и потерей значительной части энергии сопряжения. При образовании а-комплекса из нафталина потеря этой энергии заметно меньше, так как в смежном кольце образуется ароматическая бензольная структура — замкнутое десяти-я-электронное облако перестраивается в шести-я-электронное. [c.27]

    Бензол является прототипом ароматических соединений. На рис. 10.6 показаны шесть л-молекулярных орбиталей  [c.92]

    I ых и свободных л-разрыхляющих молекулярных орбиталей. Как указывалось уанее (см. рис. 54), в молекуле бензола 2р -электроны шести атомов углерода (.бразуют нелокализоаанную л-связь. Согласно теории молекулярных орбиталей этому представлению отвечает возникновение из шести атомных 2р -србиталей шести молекулярных л-орбиталей, три иэ которых оказываются связывающими, три другие — разрыхляющими  [c.520]

    Метод молекулярных орбиталей. Молекулярные орбитали в комплексных соединениях образуются по тому же нриицину и обладают теми же свойствами, что и молекулярные орбитали в двухатомных молекулах (см. 45). Отличие заключается в том. что в комплексных соединениях МО являются мно-гоцентровыми, делокализованными, подобно тому, что имеет место, иапример, в молекуле бензола (см. 167). [c.600]

    Так как данная рг-орбиталь с одинаковой вероятностью комбинирует с обеими р 2-орбиталями двух соседних С-атомов, здесь нельзя использовать локализированные двухцентровые я-орбитали. Поэтому следует рассмотреть делокализованные шестицентровые я-орбитали, образуемые комбинацией всех шести р,-орбита-лей атомов углерода (рис. 50). Очевидно, таких МО будет шесть три связывающие и три разрыхляющие. Молекулярная орбиталь бензола в МОХ, охватывающая углеродные атомы кольца, описывается выражением [c.116]

    В последние годы большое внимание уделяется изучению механизма образования промежуточных комплексов и их структуры при контакте с гетерогенными катализаторами — оксидами, сульфидами, цеолитами. В работе [10] рассмотрен механизм активации пропилена и последующее алкилирование бензола при использовании алюмосиликатов. Авторы считают, что каталитическими центрами являются полиэдры типа [АЮ4] , [АЮз] и [А10б] , имеющие вакантные или малозаселенные Зй(-орбитали, способные к заполнению электронами с молекулярных орбиталей возбужденных молекул пропилена и бензола. [c.69]

    Нафталин и полициклические углеводороды — фенантрен, антрацен, хризен, пиреп, как и бензол, подчиняются правилу Хюк-келя — содержат (4п + 2) я-электронов на связывающих молекулярных орбиталях. Молекулы этих углеводородов плоские, для них характерны высокие значения энергий сопряжения и комплекс свойств аренов. Б частности, все эти углеводороды, как и бензол, легко вступают в реакции электрофильного замещения. [c.153]

    Расчеты по методу молекулярных орбиталей показывают, что в монозамещенном бензоле индекс свободной валентности в орто- и пара-положениях всегда будет выше, чем в мета-положении, независимо от характера заместителя. Это соответствует и результатам эксперимента. [c.266]

    Разумеется, метод наложения валентных схем, использующий различные варианты представления волновой функции электронов в молекуле, например, для СвНв — менее точный (1П.66) и более точный (111.67), является лишь математическим приемом. Истинное распределение электронной плотности в молекуле, находящейся в данном энергетическом состоянии, вполне определенное и единственное, никаких изменений в нем не происходит. Поэтому неправильно было бы считать, что бензол содержит смесь молекул, находящихся в пяти различных состояниях, или что структура молекул, определяющая свойства этого соединения, является наложением (резонансом) пяти реально существующих структур. Наложение валентных схем нельзя считать физическим явлением. Это способ квантовомеханического рассмотрения состояния электронов, движение которых не локализовано около определенной пары атомов. Данный прием используется только в методе валентных связей и не фигурирует в другой квантовохимической теории — методе молекулярных орбиталей, хоторыи мы рассмотрим в дальнейшем. [c.177]

    С развитием электронных представлений у химиков возникло естественное желание объяснить химические и другие особенности ароматических соединений их электронной структурой. При этом можно было поставить вопрос, какие особепости электронной структуры приводят к ароматическим свойствам, и только ли бензол и его производные могут быть носителями этих свойств среди ненасыщенных соединений. Успешный ответ на этот вопрос дала теория молекулярных орбиталей (Хюккель, 1931). [c.227]

    Хотя методы валентных схем и молекулярных орбиталей дают несколько различаюш,иеся результаты, и тот и другой метод указывает на наличие делокализации в молекуле бензола. Например, оба метода предсказывают, что все шесть углерод-углеродных связей должны иметь равную длину, и это соответствует действительности. Поскольку каждый метод удобен для определенных целей, в дальнейшем будет использоваться или один, или другой метод как наиболее подходящий для данного случая. [c.50]

    В молекуле бензола 1несть атомных р-орбиталей шести атомов С, ориентированные перпендикулярно плоскости молекулы, образуют систему шестицеитровых молекулярных орбиталей, причем шесть электронов попарно находятся иа трех орбиталях с наименьшей Энергией. [c.16]

    Ароматический секстет здесь образуется при переходе неподе-ленной пары электронов гетероатома на молекулярную орбиталь соединения. Однако такой переход энергетически менее выгоден, чем в предыдущих случаях, и дает меньшую стабилизацию соединения, так как при этом должен образоваться частичный положительный заряд на гетероатоме и я-электронная избыточность соединения. Поэтому степень ароматичности рассматриваемых соединений зависит от природы гетероатома чем меньше его сродство к электрону, тем она выше. Во всех случаях, однако, в пятичленных гетероциклах имеется сильное нарушени-е выравненностн связей, причем порядок связей 2—3 и-4—5 значительно больше, чем в бензоле. Являясь электроноизбыточными, эти соединения значительно легче бензола вступают в реакции с электрофильными реагентами. [c.25]

    Более стро о обсуждение реакционной способности, исходя из значений граничной электронной плотности. При электрофильном замещении граничной электронной плотностью считается электронная плотность на высшей занятой молекулярной орбитали. Как видно из приведенной в разделе 1.4. диаграммы молекулярных орбиталей бензола, атаке электрофильпым реагентом должна подвергаться связываюш,ая молекулярная орбиталь с энергией — р. Чем больше граничная я-электрониая плотность на данном атоме, тем легче оп подвергается атаке электрофилом, образуя а-ко.мнлекс. [c.40]

    Образование подобных соединений обусловлено способностью лигандов типа СбНб и С5Н5 к т-дативному и тг-донорно-акцепторному взаимодействию с атомом (ионом) сйэлемента за счет подходящих по условиям симметрии заполненных и свободных молекулярных тг- орбиталей. Как указывалось ранее (см. рис. 54), в молекуле бензола 2р - электроны шести атомов углерода образуют нелокализованную к- связь. Согласно теории молекулярных орбиталей этому представлению отвечает возникновение из шести атомных орбиталей шести молекулярных 5Г- орбиталей, три из которых оказываются связывающими, три другие — разрыхляющими  [c.568]

    Простой расчет беизола по Хюккелю, напротив, показывает, что все я-электрокы находятся на связывающих молекулярных орбиталях. Кроме того, я-знергня молекульг бензола, согласно вычислению, существенно ниже, чем энергня трех изолированных л-свйэей. Таким образом, метод Хюккеля предсказывает особую устойчивость бензола. [c.325]

    В предлагаемой вниманию читателя небольшой по объему книге Дж. Теддера и Э. Нехватала основные типы органических реакций, их механизм, стереохимия и региохимия рассматриваются с помощью таких орбитальных картинок. Авторы справедливо отмечают, что применение изогнутьк стрелок, обозначающих смещение электронных пар между реагирующими молекулами или внутри молекул, не всегда может дать удовлетворительное представление о механизме реакции. Рисуя изогнутые стрелки в обычных структурньк формулах, мы направляем электронные пары в некую пустоту , хотя на самом деле в этом месте имеется определенная ((ПЛОТНОСТЬ незанятой орбитали . Эскизы молекулярных орбиталей в этом смысле более наглядно показывают, что смещение электронов происходит лишь в том случае, если орбитали вошли в контакт и перекрываются. Совмещение эскизов всех занятых молекулярных орбиталей дает зрительную легко запоминающуюся картину общего распределения электронной плотности в многоэлектронных молекулах. Например, становится ясным, что молекула бензола похожа на приплюснутый помидор с лишь слегка наметившимся делением на шесть долек, а не на штурвал корабля, ручками которого являются торчащие во все сторо- [c.5]


Смотреть страницы где упоминается термин Бензол молекулярные орбитали: [c.220]    [c.214]    [c.228]    [c.66]    [c.136]    [c.130]    [c.324]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.565 , c.567 ]

Квантовая химия (1985) -- [ c.289 ]

Полициклические углеводороды Том 1 (1971) -- [ c.36 ]

Молекулярная фотохимия (1967) -- [ c.22 ]

Химия и технология ароматических соединений в задачах и упражнениях (1971) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная бензола

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте