Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон и ядро

    Совокупность химически связанных атомов (например, молекула, кристалл) представляет собой сложную систему атомных ядер и электронов. В образовании химической связи между ними из всех существующих в природе сил существенны только электростатические силы, т. е. силы взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов. [c.41]

    Неполное разделение зарядов в ионных соединениях можно объяснить взаимной поляризацией ионов, т. е. влиянием их друг на друга, которое приводит к деформации электронных оболочек ионов. Причиной поляризации всегда служит действие электрического поля (см., например, рис. 54, пунктиром показана деформация электронной оболочки иона в электрическом поле), смещающего электроны и ядра атомов в противоположных направлениях. Каждый ион, будучи носителем электрического [c.151]


    При сближении электрона с ядром атома энергия электрона уменьшается, т. е. становится отрицательной величиной, абсолютное значение которой растет с уменьшением расстояния между электроном и ядром. [c.13]

    Эффект экранирования, уже упоминавшийся выше (см. разд. 1.5) состоит в уменьшении воздействия на электрон положительного заряда ядра, что обусловлено наличием между рассматриваемым- электроном и ядром других электронов. Этот эффект может быть количественно учтен введением постоянной экранирования. Представление об экранировании — это формальный способ учета взаимного отталкивания электронов. Очевидно, что экранирование возрастает с увеличением числа электронных слоев, окружающих ядро. [c.42]

    Характер взаимодействия ионизирующего излучения е веществом определяется параметрами частиц и свойствами вещества. При взаимодействии заряженных частиц со средой основной причиной потерь энергии являются столкновения с атомами (электронами и ядрами), приводящие к ионизации и многократным рассеяниям. Потеря энергии электронами происходит также в результате радиационного торможения, а для тяжелых частиц (протон, а-частица) - потенциального рассеяния на ядрах и ядерных реакций. При взаимодействии 7-излуче ния со средой потеря энергии объясняется Комптон-эффектом (рассеяние 7-кванта на электронах), фотоэффектом (поглощение у-кванта с передачей энергии электрону), образованием электронно-позитронных пар (при энергиях V-квантов 1,02 МэВ) и ядерных реакций (при 10 МэВ). [c.107]

    Для систем, содержащих частицы разного сорта (например, электроны и ядра, примером таких систем являются молекулы), на полную функцию Ф накладывается несколько требований. Так, например, молекула озона Оз состоит из 24 электронов и трех ядер вО . Естественно, что полная функция Ф должна быть антисимметричной по отношению к перестановкам ядер вО (последние являются бозонами). [c.23]

    Это положение строго доказывается. Понять его смысл можно, не рассматривая доказательства. Волновая функция описывает распределение электронной плотности в системе (атоме, молекуле). Если бы пробная волновая функция привела к значениям Е<. Е , значит, она отвечала бы состоянию более устойчивому, чем осуществилось в системе. Но это невозможно, так как электроны и ядра в атомах или молекулах, предоставленные самим себе, осуществляют состоя- [c.53]

    Молекула На. Электронная конфигурация молекулы Н2 в основном состоянии Нг Ь), молекулярный терм (дублет сигма). Единственный электрон молекулы на ag связывающей орбитали обеспечивает химическую связь. Молекула Нг — свободный радикал. Радикалами называют частицы с открытыми оболочками. Радикальный характер молекулы Нг легко обнаруживается по ее парамагнетизму, обусловленному только спином электрона, так как орбитальный магнитный момент молекулы равен нулю. Другие свободные радикалы также парамагнитны. В молекуле Нг между единственным электроном и ядрами нет экранирующих электронов, поэтому она характеризуется самым высоким значением ПИ = 16,25 эВ и СЭ = = 15,4261 эВ, намного превышающим СЭ других молекул. [c.75]


    Самыми существенными силами второго порядка являются не силы, обусловленные искажением электронных оболочек за счет взаимодействия между постоянными электрическими моментами, а силы, вызванные более тонким искажением распределения электронов в молекулах за счет их взаимодействия. Характер образующихся связей обусловлен механизмом кулоновского взаимодействия между электронами и ядрами двух молекул. В отличие от индуцированных сил эти силы существуют также и в случае взаимодействия сферически симметричных частиц, причем в этом смысле они являются универсальными. Фундаментальное квантовомеханическое объяснение природы этих сил с точки зрения электронных связей впервые было дано Лондоном [60]. Он отметил также, что электронные связи наиболее существенны для сил второго порядка, вызывающих рассеяние света. Эти силы обычно называются лондоновскими или дисперсионными силами. Ниже будет дано простое полуклассическое объяснение природы этих сил, которое не следует рассматривать как строгое. Такое объяснение оказывается полезным при физической интерпретации некоторых этапов математической обработки. [c.199]

    Такая интерпретация членов уравнения (4.77) в действительности хорошо согласуется с результатами квантовомеханических расчетов, в которых энергия дисперсионного взаимодействия вычисляется как вероятное значение возбужденной части оператора Гамильтона. Эта часть оператора складывается из кулоновских взаимодействий электронов и ядер одного атома с электронами и ядрами другого атома. Если далее этн кулоновские составляющие разложить в ряд Тейлора и сгруппировать члены, то в результате получится ряд, содержащий явно выраженные части диполь-дипольного, диполь-квадрупольного и т. д. взаимодействий. Это обстоятельство не должно вызывать удивления, так как разложенная в ряд возбужденная часть оператора по своей природе является чисто электростатической, а потому и все разложение будет представлять собой мультипольное разложение классической электростатики. Если вероятные значения квантовомеханических величин усреднить по времени, то получится полуклассическое описание. [c.200]

    При расчете эффективного поля, созданного электронами и ядрами системы, приходится решать многоцентровую проблему, представляющую большие математические трудности. Поэтому для практического решения задачи необходимо ввести упрощения. Предполагается, что большинство электронов не участвует в образовании молекулярной орбитали, а локализованы вблизи отдельных ядер. В образовании молекулярных орбиталей участвуют лишь внешние валентные или часть валентных электронов. Волновая функция молекулярной орбитали представляется в виде линейной комбинации атомных орбиталей (приближение МО ЛКАО). [c.49]

    Эффект экранирования заряда ядра обусловлен наличием в атоме между данным электроном и ядром других электронов, которые экранируют, ослабляют воздействие на этот электрон положительного заряда ядра и тем самым ослабляют связь его с ядром. Понятно, что экранирование возрастает с увеличением числа внутренних электронных слоев. [c.30]

    В месте перекрывания электронных облаков (т. е. в пространстве между ядрами) электронная плотность связующего облака максимальна. Иначе говоря, вероятность пребывания электронов в пространстве между ядрами больше, чем в других местах (рис. 23, а). Благодаря этому возрастают силы притяжения между положительным зарядом ядра и отрицательными зарядами электронов и ядра сближаются — расстояние между ядрами водорода в молекуле На заметно меньше (0,74 А) суммы радиусов двух свободных атомов водорода (1,06 А). [c.58]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    И атомы, есть только электроны и ядра, причем последние начинают уже распадаться на протоны и нейтроны. Все это является одним из проявлений второго закона термодинамики, в смысле увеличения числа микросостояний и снижения упорядоченности системы при распаде каждой структурной единицы материи на атомные и элементарные частицы. Таким образом, становится понятным различие между энтропией испаре-ния, рассчитанной по уравнению (236) и равной 88 Дж-моль - К , и энтропией объемного расширения, возникаюшей при увеличении объема жидкости при ее испарении [рассчитанной па уравнению (237) и равной 59,0 Дж-моль -К ]. Разность этих величин составляет 29 Дж-моль - К . Испарение жидкости соответствует переходу от квазикристаллической структуры жидкости к полностью разупорядоченному состоянию газа. Эти представления согласуются и с тем, что энтропия плавления составляет лишь примерно 21 Дж-моль -К , что соответствует переходу кристаллического вещества в жидкое состояние. То, что энтропия плавления меньше, чем указанное выше значение 29 Дж-моль -является доказательством того, что жидкость по своей структуре ближе к твердому телу, чем к газу. [c.241]


    В теории рассматриваются разные механизмы взаимодействия электрона и ядра в магнитном поле. Важнейший из них, так называемое контактное взаимодействие Ферми, связано с наличием на ядре электронной плотности неспаренного электрона. Такое взаимодействие тем больше, чем больше s-характер орбитали, на которой находится электрон. [c.62]

    Существует также прямое взаимодействие векторов моментов магнитных диполей электрона и ядра, которое зависит от величины момента ядра и от угла, образуемого вектором ядро — электрон, с направлением магнитного поля. В изотропных системах при хаотическом движении частиц это взаимодействие усредняется. В общем случае, как и -фактор, константа СТВ а —величина тензорная. Только для изотропных систем этот тензор характеризуется одним параметром (сферическая симметрия), а для анизотропных систем имеет два (симметричный волчок — эллипсоид вращения) или три (асимметричный волчок) независимых параметра. Удобно разделить тензор СТВ на изотропную и анизотропную части. Анизотропная составляющая связана как раз с прямым дипольным взаимодействием и обратно пропорциональна кубу расстояния между ядром и электроном, усредненного по волновой функции электрона. При значительной анизотропии тензора СТВ спектры ЭПР сильно усложняются и для их анализа требуется компьютерная обработка с соответствующими программами, составленными по алгоритмам решения задач с разной записью гамильтонианов взаимодействия сложных систем с полем. [c.62]

    На рис. 111.15 повторена схема энергетических уровней при сверхтонком взаимодействии в системе с одним неспаренным электроном и ядром со спином /2, которая была уже показана в правой части рис. III.4, но теперь для наглядности две пары уровней (средних и крайних) сдвинуты по горизонтали в разные стороны. По правилам отбора разрешены два электронных спиновых перехода е(1) и е(2), показанные на обоих этих рисунках, и два ядерных спиновых перехода п(1) и п(2) (см. рис. [c.80]

    Современные представления о природе валентной связи основаны на положениях классической термодинамики и квантовой механики. Согласно этим представлениям валентная связь между атомами образуется из-за стремления их к энергетически более устойчивому состоянию, которому соответствует наименьший запас свободной энергии. Химическая связь возникает при взаимодействии электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекул. Характер этого взаимодействия оказалось возможным установить на основе представлений о строении атома и о корпускулярно-волновых свойствах электрона. [c.104]

    Внутри группы при переходе от элемента с меньшим номером периода к элементу с большим номером периода (а следовательно, и большим порядковым номером) радиус атома увеличивается, а притяжение между электроном и ядром ослабевает. Энергия ионизации уменьшается. Эта тенденция ослабевает при увеличении номера периода. [c.49]

    В простейшем из атомов — атоме водорода — потенциальная энергия электрона определяется его кулоновским притяжением к ядру. Поскольку в атомных единицах заряды электрона и ядра равны —1 и -1-1 соответственно, то [c.50]

    Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекулы или кристалла. Независимо от типов химической связи причина ее образования — одна. Химическая связь образуется, если электроны взаимодействующих атомов получают возможность двигаться одновременно вблизи положительных зарядов нескольких ядер. Задача заключается в том, чтобы достаточно правильно описать главные детали этого движения многих частиц и научиться рассчитывать в различных участках молекулы электронную плотность, обеспечивающую связывание атомов. Оказалось, что получить даже качественно правильные решения уравнения Шредингера удается не всегда. Поэтому в настоящее время применяются для объяснения свойств химической связи разнообразные приближенные теории, часто сильно отличающиеся друг от друга. Из методов квантовой химии наиболее известны два подхода к расчету молекулярных систем — метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО). [c.101]

    На кривой энергии ионизации наряду с резко выраженными экстремальными точками наблюдаются слабовыраженные максимумы и минимумы. Наличие их можно объяснить с помощью двух представлений об экранировании заряда ядра и о проникновении электронов к ядру. Эффект экранирования заряда ядра обусловлен наличием в атоме между электроном и ядром других электронов, которые ослабляют воздействие на этот электрон положительного заряда ядра. Эффект проникновения электронов к ядру обусловлен тем, что все электроны могут находиться в определенные моменты времени в области, близкой к ядру. Внешние электроны также проникают к ядру через слои внутренних электронов. Эффект проникновения увеличивает прочность связи внешних электронов с ядром. [c.228]

    Будем искать решение в виде произведения двух функций, зависящих от расстояния между электроном и ядром г и от углов  [c.444]

    Значение энергии электрона в атоме согласно (1.10) получается со знаком минус. Это связано с тем, что за состояние с нулевой энергией принимают то, в котором электрон с кинетической энергией, равной нулю, удален от ядра на бесконечно большое расстояние, и по мере приближения электрона к ядру атома энергия электрона уменьшается, т. е. становится отрицательной величиной, абсолютное значение которой растет с уменьшением расстояния между электроном и ядром. [c.15]

    Составные части атома — электроны и ядро. Как уже указывалось, атомы химических элементов состоят из ядра и движущихся вокруг него электронов. Свойства электронов были изучены после того, как во второй половине прошлого века удалось получить потоки этих частиц. Вначале была измерена величина отношения заряда электрона к его массе е т . Эта величина определяется по отклонению узкого пучка электронов в электрическом и магнитном полях. Впервые такие измерения были проведены в 1897 г. Дж. Дж. Томсоном (Англия) конструкция использованного им прибора схематически изображена на рис. 2. В настоящее время аналогичные устройства — электроннолучевые трубки — широко используются (например, в телевизорах). Теория данного метода кратко рассмотрена в приложении 1 (См. стр. 288). С помощью этих экспериментов было найдено- е т = = 5,273 10 эл.-ст. ед./г. [c.10]

    Химические свойства водорода в значительной степени определяются способностью его атомов отдавать единственный имеющийся у них электрон и превращаться в положительно заряженные ионы. При этом проявляется особенность атома водорода, отличающая его от атомов всех других элементов отсутствие про ме 4<уточиых электронов между валентным электроном и ядром. Иои водорода, образующийся в результате потери атомом водо рода электрона, предбтавляет собой протон, размефы которого на несколько порядков меньше размера катионов в(зсх других эле ментов. Поэтому поляризующее действие протона очень велико, вследствие чего водород ие способен образовывать ионных соеди нений, в которых он выступал бы в качестве катиона. Его соединения даже с наиболее активными неметаллами, например, е фтором, представляют собой вещества с полярной ковалентной связью. [c.344]

    Литий. Атом лития имеет один валентный электрон, поэтому молекула может иметь не больше двух связывающих электронов. Эти электроны спарены на низшей доступной для них молекулярной орбитали, о,. Следовательно, в молекуле Li2 имеется одна ковалентная связь. Длина этой связи (2,67 А) превышает длину связи в молекуле Н2 (0,74 А), потому что в молекуле лития связь образуется более протяженными атомными орбиталями сп = 2, анесп = 1. По этой же причине связь в слабее, чем в Н2 энергия связи в 2 равна ПО кДж мoль , а в Н2-432 кДж моль Ч Ядра атомов лития расположены дальше друг от друга, электронное облако распределено в большем объеме и силы притяжения между электронами и ядрами соответственно ослаблены. [c.525]

    Уравнение (1.38) легко может быть получено теоретически. Как мы знаем, рентгеновский спектр обусловлен переходами электронов на внутренних оболочках атома. Для атомов и ионов с одним электроном терм выражается соотношением (1.6). Видоизменим это соотношение применительно к электрону на одной из внутренних оболочек атома. Электроны, находящиеся на большем расстоянии от ядра, чем рассматриваемый, оказывают малое влияние на энергию последнего, так как они значительно менее прочно связаны с ядром их воздействием на рассматриваемый электрон можно пренебречь. Те электроны, которые находятся между рассматриваемым электроном и ядром, уменьшают притяжение электрона к ядру. Этот эффект можно формально рассматривать как уменьшение действующего на электрон заряда ядра иа некоторую величину Ь, называемую постоянной экранирования. Тогда выражение для терма приобретает вид Т =/ [ (2 — Ь). Отсюда можно найти волновое число  [c.36]

    Природа химической связи, по современным представлениям, объясняется изаимодействие.м электрических полей, образуемых электронами и ядрами атомов, участвующих в создании молекулы. [c.42]

    Следует сказать несколько слов об эффективном операторе Гамильтона с %фф. Предполагается, что каждый электрон обладает кинетической энергией и находится в некотором эффективном поле, которое создается всеми остальнымм электронами и ядрами молекулы. Точный вид в простых вариантах метода МО ЛКАО не опре- [c.52]

    Природа взаимодействия магнитных моментов электрона и ядра-Контактное ферми-взаимодействие. Этот тип взаимодействия.. наблюдается, если имеется конечная, не равная нулю плотность неспаренного электрона в точке расположения ядра. Только s-орби-тали атомов удовлетворяют описанному условию. Например, волновая функция электрона в атоме водорода, находящегося в Is- o-стояпии, равна [c.243]

    Диполь — дипольное анизотропное взаимодействие. Анизотропное сверхтонкое взаимодействие можно рассматривать как взаимодействие двух магнитных дииолей (частиц, обладающих магнитными моментами) — иеспаренного электрона и ядра. Кроме внешнего магнитного поля электрон оказывается также в магнитном иоле ядра. Величина этого дополнительного магнитного иоля в любой точке пространства равна [c.244]

    Большая часть сигналов ЭПР в тяжелых нефтяных остатках и асфальтовых пеках обусловлена наличием комплексов с переносом заряда, присутствующих в остатках вакуумной перегонки нефти и частично исчезающих после карбонизации при 430°С в теченив 5 ч [166]. Возрастание концентрации свободных радикалов в процессе карбонизации авторы связывают с уменьшением соотношения ШС, а наблюдаемое для некоторых остатков уменьшение концентрации радикалов - разложением КПЗ и рекомбинацией неспаренных электронов в ловушках поликонденсированных ароматических колец. Вклад диполь-дипольного взаимодействия между спинами электронов и ядрами водорода незначителен [166]. [c.68]

    Прочность связи ме5кду электроном и ядром. Энергия ионизации. Правило октета. Инертные (благородные) газы. Электроотрицательность [c.48]

    Эффект экранирования (см. также разд. 1.5.1) состоит в уменьшении воздействия на электрон положительного заряда ядра из-за наличия между рассматриваемым электроном и ядром других электронов. Этот э( ект может быть количественно учтен введением постоянной экранирования. Представление об экранировании - это формальный способ учета взаимного оттал- [c.45]


Смотреть страницы где упоминается термин Электрон и ядро: [c.15]    [c.30]    [c.61]    [c.80]    [c.145]    [c.472]    [c.248]    [c.17]   
Смотреть главы в:

Общая химия -> Электрон и ядро




ПОИСК







© 2025 chem21.info Реклама на сайте