Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафины, алкилирование карбониевыми ионами

    Повышение температуры при алкилировании увеличивает вероят ность распада карбоний-ионов, что приводит к увеличению содержания в алкилате парафинов с меньшим, чем в основном продукте, числом атомов углерода в молекуле. Это приводит к снижению октанового числа алкилата. Снижение октанового числа с возрастанием температуры алкилирования происходит приблизительно линейно на 0,1 пункт/°С. [c.185]


    Традиционное алкилирование парафинов олефинами представляет собой катализируемую кислотами реакцию, которая заключается в присоединении третичного карбоний-иона, генерируемого из молекулы парафина, к олефину с образованием (после присоединения гидрид-иона) насыщенного углеводорода более высокой молекулярной массы. Механизм этой реакции [19] показан на примере алкилирования изобутана этиленом (схема I) и заключается в следующем. Первоначально протекает протонирование этилена. При этом образуется кислотный первоначальный этил- [c.150]

    Как уже указывалось, трудно согласовать такие факты, как образование изобутана из бутиленов с прямой цепью и изонентана из пентена-2 при алкилировании метилциклопентана с серной кислотой [214] и полное отсутствие изомеризации изобутана и изопентана в присутствии серной кислоты, поскольку образование карбоний-иона из последнего было доказано путем дейтерий-водородного обмена [192]. Согласно теории я-комплекса и имея в виду, что накопление алкильных групп у кольцевых атомов углерода, вероятно, стабилизирует соединения с малыми кольцами, можно предложить следующую схему образования перегруппировавшихся парафинов из олефинов с прямой цепью, требующую малых энергетических затрат [c.112]

    Превратиться в парафин С)а, подвергнуться расщеплению до олефина и иона карбония с меньшим числом атомов углерода или же присоединить молекулу олефина и образовать карбониевый ион ig. Представление о протонировании олефина как о первой стадии алкилирования подтверждается данными, приведенными на рис. 13-34. Эти данные показывают, что содержание н-бутана достигает максимума в тот момент, когда выход алкилата минимален, а с увеличением выхода последнего содержание н-бутана быстро снижается [79]. В предложенном механизме алкилирования изопарафинов важная роль отводится реакциям переноса водорода. Специфическая роль цеолитов в алкилировании связана не только с их высокой активностью в превращении углеводородов, но и с их способностью катализировать одновременно протекающие реакции перераспределения водорода. Основы каталитического действия цеолитов в этих реакциях пока до конца не раскрыты. При изучении гомогенного алкилирования в присутствии кислот было показано, что развитие реакций переноса водорода, обеспечивающих непрерывное алкилирование, во многом определяется наличием в сырье циклических структур с большим содержанием двойных связей, в состав которых входят от 2 до 5 циклопентильных групп. [c.403]


    В ранее опубликованных работах [2, 4, 9, 11] делались предположения о механизме жидкофазных углеводородных реакций, как алкилирование изопарафинов, полимеризация и изомеризация олефинов и изомеризация парафинов. Катализаторами для этих реакций служили сухой фтористый водород, серная кислота, промотированные галоидные соединения алюминия. Только промотированные галоидные соединения алюминия представляют активный катализатор для изомеризации нормальных парафинов. Облад и Горин [9] предполагают, что твердая поверхность или разрез поверхности катализатора, имеющие должные диэлектрические свойства, необходимы для существования ионов карбония, участвующих в механизме изомеризации н-бутана. [c.85]

    Авторы данной работы полагают, что механизм изомеризации нормальных олефинов при контакте с катализаторами совершенно подобен механизму алкилирования, изомеризации парафинов и другим подобным реакциям, ранее описанным. Необходимые ионы карбония легко могут образоваться в условиях, существующих на поверхности различных образцов окисей алюминия, использованных в настоящем исследовании. [c.85]

    Олефины в результате переноса водорода, полимеризации и циклизации дают сложные высоконенасыщенные продукты, образующие комплексные соединения с А1С1з — маслообразную фазу катализатора, содержащую 60—80% хлористого алюминия. Образование побочных продуктов сильно увеличивается с температурой реакции в результате увеличения роли раопада карбоний-ионов. Возрастание числа атомов углерода в молекуле н-парафина интенсифицирует распад, так как эндотермичность реакции снижается. Образование продуктов распада при изомеризации н-гептана и выше происходит при разложении карбоний-ионов, образующихся из исходного углеводорода стадия алкилирования не требуется и это сильно интенсифицирует раопад. [c.234]

    Полимеризация. В процессе алкилирования даже при самых благоприятных условиях всегда образуется небольшое количество высококипящего остатка. Полимерная молекула тяжелой части алкилата представляет собой, по существу, молекулу парафина, образующуюся из двух или более молекул олефина и одной молекулы изобутана. Возникновение полимера связано с тенденцией крупных карбоний-ионов (например, ионов С + или Св+) взаимодействовать с грег-бутилкарбоний-ионом и присоединять олефины прежде, чем произойдет отрыв гидрид-иона и образуется молекула изопарафина  [c.39]

    Обе реакции протекали без участия парафина. Это доказывает, что алкилирование метана этиленом идет через промежуточное образование более стабильных соединений (пентакоорди-нированный карбоний-ион). Поведение этих алкилхлоридов рассмотрено позже (стр. 158), после обсуждения механизма ал,кили-рования. Необходимо также отметить, что получаемый пропан [c.154]

    Согласно такой интерпретации ингибитор побочных реакций действует, потребляя олефин, который иначе образовал бы побочные продукты путем молекулярной цепной реакции, включающей алкилирование и деалкилирование. Распространяя эту интерпретацию на другие парафины, следует обратить внимание на уже упоминавшиеся два факта, имеющие очень важное значение 1) бутаны изомеризуются без побочных реакций и 2) побочные продукты, образующиеся из высших парафинов, содержат не менее четырех атомов углерода. Оба эти явления наблюдаются, если только условия реакции не слишком жесткие. Из рассмотрения этих фактов можно заключить, что в мягких условиях распад промежуточных соединений (предположительно карбоний-ионов) ограничен образованием осколков (меньшие карбоний-ионы и олефины), имегощих не менее четырех атомов углерода. В ходе изомеризации парафина с числом атомов углерода, меньшим восьми, подобное промежуточное соединение может образоваться только путем алкилирования парафина олефином, вводимым в реакционную смесь или образующимся из парафина в ходе реакции. Как указывалось кышс, присутствие следов олефина или вещества, генерирующего олефины, необходимо для низкотемпературной изомеризации парафина. В большем количестве олефин сильно уменьшает селективность изомеризации -пентана [58]. [c.87]

    Если действие ингибитора побочных реакций основано на его алкилировании олефинами, которые иначе потребляли бы изомеризующийся парафин, то следует ожидать, что селективность будет зависеть от относительной реакционной способности ингибитора в отношении алкилирования. Что это так, видно из сопоставления относительных концентраций бензола, нафтена и изобутана, необходимых для эффективного подавления побочных реакций при изомеризации пентана. В сравнительных опытах но алкилированию было найдено, что бензол в 350 раз более реакционноспособен по отношению к карбоний-иону, чем изобутан [44]. Протекавшие при этом реакции [c.90]

    Более тяжелые карбоний-ионы проявляют тенденцию к обращению стадии алкилирования до или после изомеризации. В последнем случае могут быть получены новые олефины и парафины. Например, при самоалкилировании изопентана образуются С о-карбоний-ионы, легко расщепляющиеся на j-f С5 или после изомеризации на g-f С4. [c.193]


    Эти внутри- или межмолекулярные процессы были постулированы, чтобы объяснить перегруппировку карбоний-ионов (разд. IV.2.A), цепной характер изомеризации алканов (разд. 1У.2.Б), самоалкили-рование парафинов при алкилировании (разд. 1У.З.Б), [c.197]

    Природа реакции и ее значение в органической химии. К реакциям такого рода относятся алкилирование олефинов и парафинов, а также катионная полимеризация винильных соединений. Эти процессы имеют большое значение в нефтехимической промышленности и для производства полимеров. Промежуточное участие карбониевых ионов в названных реакциях подтверждается следующими фактами а) реакции протекают в тех же условиях, в каких из молекул аналогичного строения заведомо образуются карбоний-ионы б) реакции могут быть инициированы добавлением предварительно полученной соли карбония к олефиновому компоненту в) прн этих реакциях наблюдаются характерные для карбониевых ионов перегруппировки г) полимеризация ненасыщенных соединений, например стирола, прп определенных условиях иногда сопровождается образованием окрашенных интермедиатов, что наблюдается также для реакций менее сложных карбониевых ионов в аналогичных условиях д) кинетика катионной винильной полимеризации согласуется с представлением о карбониевом ионе как переносчике цепи. Ниже некоторые из этих аспектов будут рассмотрены подробнее. [c.218]

    Эта реакция была открыта в 1954—1955 гг. на платиновом (Казанский, Либерман и сотр. [201) и алюмохромовом (Шуйкин с сотр. [21]) катализаторах. На окисном катализаторе реакция идет с очень небольшими выходами и была изучена только на примерах н-пентана и изооктана. Соображений о механизме С -дегидроциклизации парафинов на окисных катализаторах в литературе не появлялось. Имеются данные лишь о С -дегидроциклизации алкил- и алкенилбензолов в инданы и индены на хромовом [221 и алюмо-силикатном [23, 24] катализаторах. Реакция рассматривалась как внутримолекулярное алкилирование, идущее по карбоний-ионному механизму. На платиновых катализаторах (сначала на Pt/ , а позднее на бифункциональных Pt/Al-jOg) исследования проводились гораздо шире. В реакции могут участвовать углеводороды разных классов. Вот типичные примеры [25—281  [c.48]

    Томас указал, что высокие температуры могут быть необходимы для образования малых количеств олефинов, которые в свою очередь образуют ионы карбония для ряда каталитических ценных реакций, идущих по механизму обмена гидрид-иона, предложенному Бартлеттом для алкилирования олефинов парафинами. В связи с проведением таких реакций с малыми количествами олефинов Грихгфельдер отметил, что, как было найдено Пинесом и Уалхером [37], при изомеризации бутана (полагая, что в этом случае [c.89]

    В результате крекинга парафиновых углеводородов в присутствии хлористого алюминия, промотированного хлористым водородом, образуется смесь продуктов большего и меньшего молекулярных весов, чем исходный парафин. Такая реакция, известная как автодеструктивное алкилирование [24], предполагает каталитический крекинг, сопровожда-юш,ийся алкилированием путем присоединения третичного алкильного иона карбония к промежуточному олефину. [c.237]

    Хотя изомеризация во всех процессах крекинга и реформинга происходит самопроизвольно, она особенно важна для превращения углеводородов Н-С4 и Н-С5 в изопарафины, например для получения из н-бутана изобутана, используемого для алкилирования олефинов в разветвленные октаны. В качестве катализаторов для этого процесса используют хлористый алюминий и НС1 либо в растворе в виде комплекса AI I3 с углеводородом, либо адсорбированный на носителе для парофазных реакций. Очень чистые углеводороды, например н-бутан, не удается изомеризовать этими кислотными катализаторами [197—198], но изомеризация наблюдается после добавления следов олефинов или веществ, которые могут реагировать с парафином, образуя ионы карбония. Применяют также алюмосиликатные катализаторы, однако наиболее активными являются катализаторы двойного назначения, т. е. бифункциональные , в особенности содержащие платину и алюмосиликат или активированную окись алюминия. [c.340]

    Третичный бутильный ион карбония (или третичный бромистый бутил) может подвергаться реакциям диспропорционирова- ия, типа отмеченных в разделах, посвященных деструктивному алкилированию и перераспределению водорода с образованием изопентана и вышекипящих парафинов. [c.152]


Смотреть страницы где упоминается термин Парафины, алкилирование карбониевыми ионами: [c.153]    [c.155]    [c.195]    [c.219]    [c.40]    [c.305]   
Карбониевые ионы (1970) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование ионных

Карбоний-ионы



© 2024 chem21.info Реклама на сайте