Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикальная полимеризация ненасыщенных соединений

    При рассмотрении механизма электрополимеризации ненасыщенных соединений различают полимеризацию свободнорадикальную и ионную, причем первая более распространена [3, 5]. Какой из механизмов является основным, зависит от строения мономера и используемого электролита. Образование полимера может происходить как на катоде [6—8], так и на аноде [2]. Механизм радикальной полимеризации кратко можно представить следующим образом [3]  [c.66]


    Понимание механизма химических процессов, приводящих к образованию высокомолекулярных соединений, является необходимым условием решения главной задачи всей химии полимеров — синтеза полимерных материалов с заранее заданными свойствами. В настоящее время одним из основных методов, используемы для получения полимеров самых различных типов (каучуков, многих видов пластмасс, некоторых волокнообразующих полимеров), является свободно-радикальная полимеризация ненасыщенных соединений. Подробному рассмотрению кинетики и механизма этой реакции и посвящена монография Бемфорда и др. Кинетика радикальной полимеризации виниловых соединений . [c.5]

    В-3.4. Радикальная полимеризация ненасыщенных соединений [c.199]

    Объяснение действия ингибиторов цепных реакций окисления основывается на представлении о дезактивации кинетических цепей, например, путем отрыва активными радикалами подвижных атомов водорода от молекул ингибитора. При этом образуются малореакционноспособные свободные радикалы. Следовательно, в этих случаях протекают реакции того же типа, что и при передаче цепи в процессе радикальной полимеризации ненасыщенных соединений. [c.128]

    Радикальная полимеризация ненасыщенных соединений тормозится молекулярным кислородом. Скорее всего углеродные радикалы при радикальной полимеризации ненасыщенного соединения реагируют с Ог при этом образуются пероксирадикалы. Последние присоединяются к мономерным молекулам, и снова возникают углеродные радикалы и т. д. Так, посредством чередующегося присоединения мономерных молекул (стирол) и молекул кислорода образуются полимерные нерекиси  [c.62]

    Для образования активных центров можно применять реакцию переноса цепи через полимер. Известно, что при радикальной полимеризации ненасыщенных соединений при. малых степенях превращения мономера образуются главным образом линейные макромолекулы. С увеличением концентрации полимера все интенсивнее протекают реакции переноса цепи через полимер, что приво- дит к разветвлению макромолекул. Поэтому при радикальной [c.227]

    Для образования активных центров можно применять реакцию переноса цепи через полимер. Известно, что при радикальной полимеризации ненасыщенных соединений при малых степенях превращения мономера образуются главным образом линейные макромолекулы. С увеличением, концентрации полимера все интенсивнее протекают реакции переноса цепи через полимер, что приводит к разветвлению макромолекул. Поэтому ири радикальной полимеризации мономера Мг в присутствии гомополимера М неизбежно происходит перенос цепи через полимер, в результате чего образуются привитые сополимеры. Возникшие при распаде [c.200]


    Таким образом, полимеризация ненасыщенных соединений при каталитическом действии металлоорганических соединений может протекать как по радикальному, так н по ионному механизму. Элементарные реакции инициирования в этих случаях могут быть выражены следующими общими схемами  [c.158]

    Для образования макромолекулы одна из молекул ненасыщенного или циклического вещества должна быть переведена в состояние высокой активности. Такая молекула приобретает способность вступать в реакцию с неактивированными молекулами, последовательно присоединяя их. Реакционная способность растущей цепи при этом не утрачивается. Активация молекул ненасыщенного или циклического соединения связана с разрывом двойной связи или разрушением цикла. Если в результате разрыва связи молекула превращается в радикал, происходит радикальная полимеризация. Разрыв кратной связи молекулы может привести к образованию иона, в этом случае реакция протекает по законам ионной полимеризации. Если начальный ион приобретает положительный заряд, происходит катионная полимеризация, а в случае образования отрицательно заряженного иона—анионная полимеризация. [c.396]

    Полимеризации ненасыщенных соединений, протекающей через свободные радикалы, посвящено, несомненно, наибольшее число исследований. В настоящее время общепринятые представления о радикальной цепной полимеризации вытекают, главным образом, из развитых в свое время взглядов Штаудингера [1]. В соответствии с ними процесс полимеризации основан на способности многих радикалов к одностороннему присоединению по месту С = С-связи, как это видно на примере присоединения к стиролу бензоатного радикала, образующегося из перекиси бензоила. [c.163]

    Можно также проводить сополимеризацию ненасыщенных поликарбонатов с различными винильными соединениями (стиролом, метилметакрилатом и др.) в присутствии инициаторов радикальной полимеризации. При этом образуются неплавкие и нерастворимые продукты, частоту сшивок в которых можно регулировать меняя содержание ненасыщенного бисфенола в смеси бисфенолов при получении поликарбоната [102]. Сополимеризацией ненасыщенных поликарбонатов с мономерами можно получать связующее для стеклопластиков. [c.264]

    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    По радикальному механизму полимеризуются соединения с двойной С=С-связью, такие, как этилен, винилхлорид, винилаце-тат, тетрафторэтилен, акрилонитрил, метакрилонитрил, стирол, бутадиен и др. Некоторые ненасыщенные мономеры не способны к радикальной полимеризации вследствие стерических затруднений. [c.285]

    Разрыв двойной связи ненасыщенных соединений с превращением их в радикалы обычно осуществляется под действием очень неустойчивых веществ—перекисей, гидроперекисей, диазосоединений, которые служат инициаторами радикально-цепной полимеризации. С повышением температуры такие вещества легко образуют высокоактивные радикалы  [c.396]

    При изучении окислительных превращений углеводородов, содержащих кратные связи, приходится иметь дело с рядом специфических явлений. Ненасыщенные связи активируют по отношению к радикальным реакциям находящиеся в а-положении С — Н-связи. Вследствие склонности ненасыщенных соединений к полимеризации наблюдается сополимеризация углеводородов с кислородом наряду с развитием окислительно-деструктивных процессов. [c.53]

    Основными потребителями перекисных соединений являются производства, получающие и перерабатывающие полимеры. Перекисные соединения применяют в процессах радикальной полимеризации виниловых и диеновых соединений, отверждения ненасыщенных полиэфирных смол, вулканизации каучуков и др. [c.133]

    Этот процесс противоположен реакции диссоциации радикалов действительно, многие реакции присоединения обратимы. Другими примерами присоединения радикалов могут служить радикальная полимеризация и галогенизация ненасыщенных соединений  [c.151]


    Полимеризация ненасыщенных органических соединений (мономеров) может идти при воздействии различных ионных и радикальных агентов. В процессах получения наиболее важных полимеров широко применяются химические источники радикалов. К ним относятся органические перекиси и азо-соединения, которые при нагревании распадаются на свободные радикалы. Часто используется реактив Фентона — раствор смеси ионов двухвалентного железа и перекиси водорода, дающий свободные радикалы по механизму переноса заряда. [c.341]

    Рассмотрим кинетические эффекты, вызываемые координационно-ненасыщенными соединениями металлов при радикальной полимеризации мономеров с основными заместителями (кислотность и основность понимаются согласно Льюису), на начальных стадиях превращения, что позволяет в наиболее чистом виде исследовать влияние этих соединений, образующих комплексы с мономерами и радикалами, на реакционную способность последних. В присутствии солей некоторых металлов (Ы, М , А1, Zn, 8п) скорость полимеризации виниловых мономеров с основными функциональными группами (метилметакрилата (ММА), метилакрилата (МА), акрилонитрила (АН), 4-ви-нилпиридина и др.), инициируемой радикальными возбудителями, возрастает [8, 12]. [c.59]

    Возможности управления элементарной реакцией роста отчетливо проявляются на примере совместной полимеризации в системах, где один или оба сомономера способны взаимодействовать с молекулами реакционной среды. Эти результаты существенно дополняют данные по гомополимеризации, а в совокупности позволяют глубже понять механизм реакции. Количество публикаций, посвященных исследованию влияния реакционной среды на параметры радикальной сополимеризации, намного превышает количество работ, в которых изучены аналогичные эффекты при гомополимеризации (см., например, 39— 60]). В данном обзоре будут приведены только некоторые результаты, позволяющие сделать заключение об общих закономерностях влияния координационно-ненасыщенных соединений металлов на сополимеризацию виниловых мономеров. [c.69]

    Как уже указывалось выше, в ненасыщенных каучуках привитая сополимеризация олигомеров протекает по механизму реакции передачи цепи от растущего макрорадикала ОЭА на каучук, а также в результате отрыва а-атома водорода в макромолекуле эластомера радикалами инициатора. Исследование механизма трехмерной привитой сополимеризации каучуков и ОЭА показало, что при использовании соединений, инициирующих радикальную полимеризацию метакриловых эфиров, но не обладающих способностью [c.253]

    К числу описанных в литературе методов синтеза олигомеркаптанов относится, например, радикальная полимеризация ненасыщенных соединений в присутствии таких телогенов, как тиолы и ксантогендисульфиды [58]. Количество телогена обычно изменяется от 2 до 20 /о (масс.), а полимеризация проводится либо в эмульсии, либо в растворе в качестве мономеров используют диеновые углеводороды, их смеси со стиролом или акрилатами. Если применяют ксантогендисульфид, то получают олигомер с концевыми ксантатными группами, которые при нагревании или гидролизе количественно превращаются в тиольные. [c.26]

    Образование полимера происходит при последовательном присоединении мономеров. Полимеризация ненасыщенных соединений может проходить по разным механизмам свободно-радикальному, ионному. Кратко рассмотрим их по агдельнссти. [c.233]

    Цурута -считает возможным как радикальный, так и ионный механизм в реакции полимеризации ненасыщенных соединений при каталитическом действии металлоорганических соединений. [c.257]

    Телофункциональные плейномеры получают поликонденсацией или ступенчатой полимеризацией бифункциональных веществ при неэквивалентном их соотнощении, полимеризацией ненасыщенных соединений в присутствии инициаторов радикальной полимеризации, катионной полимеризацией оксо- или тиоциклов, анионной полимеризацией, инициируемой щелочными металлами или ме-таллалкилами. [c.188]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Процессы ионной полимеризации, которые характеризуются гетеролитическим разрывом связей в мономере под влиянием различных полярных агентов, являются более универсальными, чем процессы радикальной полимеризации. При радикальном инициирований в качестве мономеров могут быть использованы почти исключительно ненасыщенные соединения, причем и для них, как мы видели, существуют определенные ограничения. Ионная полимеризация позволяет синтезировать высокомолекулярные соединения не только из ненасыщенных мономеров, в том числе неполимеризующихся по радикальному механизму, но и из веществ иного типа — карбонильных производных, окисей, лакто-нов, лактамов и др. Это не означает, что ионная полимеризация является неизбирательной. Напротив, наряду с соединениями, способными к любому типу ионной полимеризации, существуют мономеры, отличающиеся специфическим характером часть из них способна полимеризоваться только по катионному механизму, часть — по анионному. [c.289]

    Актуальность работы. В настоящее время активно изучаются вещества, способные менять свое строение и физико-химические свойства в зависимости от изменения внешних условий (давление, температура, pH среды, лазерное освещение и другие). В связи с этим особый интерес вызывают фта-лиды, для которых возможно существование в циклической и линейной формах. Они представляют собой индивидуальные соединения, переход которых из одной формы в другую происходит при изменении внешних факторов. Еще большее значение имеет изучение свойств полимерных материалов, содержащих функциональные группы меняющегося строения. Так, фталидсодержащие полимеры обладают уникальными электрофизическими и оптическими свойствами. Но последние сочетаются с высокими температурами стеклования и текучести, а также с плохой растворимостью в большинстве растворителей. Этих недостатков лишены многие виниловые полимеры, в частности полиакрилаты, синтезируемые чаще всего методами радикальной полимеризации. Поэтому важным представляется введение ненасыщенных фталидов в акриловые полимеры, прежде всего, на стадии синтеза последних. Однако о получении, строении, поведении ненасыщенных фталидов в радикальной (со)полимеризации известно очень мало. [c.3]

    Различные радикалы присоединяются [уравнение (9)] к алкенам, диенам, ароматическим соединениям, алкинам и к другим соединениям с ненасыщенными связями [26]. Стадия присоединения в реакциях с алкенами обычно является частью цепного процесса [схема (21)], приводящего к образованию аддуктов 1 1 (24), теломеров, например (25), или высокомолекулярных соединений. Едва ли нужно говорить о важности процессов радикальной полимеризации, но и образование аддуктов 1 1 также является важной синтетической реакцией [27], применимой к широкому кругу аддендов, например к полигалогенметанам, карбоновым кислотам, эфирам, нитрилам, спиртам, аминам и разнообразным радикалам с радикальным центром на гетероатоме. Преимущественное образование при реакции аддуктов 1 1 либо полимеров определяет конкуренция между стадиями (б) и (в) на схеме (21), и хотя это в большой степени зависит от природы реагирующих веществ, все же изменение условий реакции позволяет в значительной мере контролировать направление процесса. Алкены, образующие стабилизованные радикалы (23), которые ведут цепь, дают преимущественно полимеры. Например, стирол (22, К = РЬ) легко присоединяет радикалы, однако образующийся при этом резонансно стабилизованный радикал на стадии переноса цепи [стадия (б)] имеет низкую реакционную способность и реагирует предпочтительно с другой молекулой стирола. Такие алкены образуют главным образом полимеры, за исключением тех случаев, когда в адденде имеется достаточно слабая связь, чтобы стадия переноса (б) могла конкурировать со стадией дальнейшего присоединения (в). Наоборот, менее стабилизованные ведущие цепь радикалы генерированные из таких алкенов, как, например, (22, К = А1к), обладают [c.579]

    Появление активных центров вследствие распада инициатора в среде ненасыщенного соединения приводит к развитию радикальной полимеризации и образованию макромолекул только при определенных благоприятствующих этому обстоятельствах. Главное из них — принципиальная способность данного соединения к цепной реакции роста. Из самого факта присоединения свободного радикала В к двойной связи мономера еще не следует, что образовавшийся при этом новый радикал КМ вызовет реакцию роста полимерной цени. Как хорошо известно, существуют вещества, взаимодействующие со свободными радикалами по двойной связи, но не способные к образованию высокомолекулярных соединений при радикальном инициировани . Типичны в этом отношении пропилен, изобутилен и другие а-олефины, простые виниловые эфиры, а также большинство три- и тетразамещенных этилена и бутадиена. На причинах, обусловливающих это явление, мы остановимся далее. [c.214]

    Результаты, полученные при определении констант скорости роста, дают ясную картину реакционноспособности различных мономеров по отношению к собственным свободным радикалам (табл. 13). Отметим существование больших различий в абсолютных константах роста для разных мономеров при сравнительно близких значениях энергий активации этох реакции. Следовательно, причина этих различий лежит в предэкспоненте уравнения Аррениуса и кинетика роста цепи в меньшей степени зависит от энергии переходного состояния, чем от его энтропии. В последнее время с помощью ЭПР-спектроскопии удалось изучить кинетику взаимодействия ряда макрорадикалов с различными веществами (кислородом, донорами водорода, ненасыщенными соединениями). Сравнение скоростей реакций для разных макрорадикалов показывает, что энергия активации не может служить объективной мерой их реакционноспособности. Изменения пред-эксноненциального фактора часто оказываются гораздо более существенными. Исходя из теории абсолютных скоростей реакций, градации реакционноспособности радикалов следует объяснять разницей свободных энергий активированных комплексов. Нет ничего удивительного в том, что нри переходе в состояние активированного комплекса энтропия системы, состоящей из радикала и атакуемой им молекулы, может существенно меняться. Такая атака предполагает весьма определенное взаимное расположение реагентов, а это приводит к большим отклонениям величин иредэкспо-ненциального множителя от значений, получаемых с помощью теории столкновений. То же относится и к реакции роста цепи при радикальной полимеризации. [c.230]

    Это характерно для типичных анионных мономеров (ненасыщенных нитросоеДине-ний, нитрилов) или для особенно эффективных инициирующих систем (например, для натрийнафталиновОго комплекса в тетрагидрофуране). С умеренной скоростью протекает полимеризация углеводородных мономеров под влиянием обычных металлорганических соединений или щелочных металлов в углеводородной среде. Общая скорость полимеризации в таких случаях вполне сопоставима со скоростью обычных реакций радикальной полимеризации, однако весь ход реакции роста имеет совершенно иной характер. При радикальной полимеризации рост каждой индивидуальной молекулы длится от долей секунды до нескольких секунд. Этого времени достаточно для того, чтобы растущая цепь пробежала через все промежуточные стадии. Рост индивидуальных цепей при анионной нолимеризации может растягиваться на часы, в чем легко убедиться путем измерения молекулярного веса полимера, образующегося через различные промежутки времени. Оказывается, что степень полимеризации с конверсией непрерывно возрастает (рис. 93). Время, необходимое при анионной полимеризации для присоединения очередного звена, часто сопоставимо с продолжительностью роста всей цепи при радикальном процессе. [c.345]

    В предшествующих параграфах мы касались только полимеризации мономеров, содержащих ненасыщенные С=С связи. При использовании попных возбудителей возможны процессы аддитивной полимеризации с раскрытием других связей С=0 (карбонильные соединения), С—О (циклические эфиры и лактоны), С—N (циклические имины и лактамы), С=К (нитрилы), С—8 (циклические тиоэфиры), С =8 (тиокарбопильные производные) и т. п. При этом образуются полимеры, содержащие в основной цепи наряду с С-атомами другие атомы — О, N и 8. Такие макромолекулы в отличие от полимеров винильного или диенового ряда (карбоцепных) называются гетероцепными. Перечисленные выше мономеры, устойчивые по отношению к радикальным 11нициато-рам,1 в большинстве своем способны и к катионной, и к анионной полимеризации, причем раскрытие соответствующих связей может повлечь за собой образование как углеродных ионов, так и ионов с зарядом на гетероатоме. Первые систематические исследования в этой области принадлежат Штаудингеру (полимеризация формальдегида и окиси этилена), но большое внимание она привлекла к себе только в последние годы. Мы ограничимся рассмотрением механизма полимеризации кислородсодержащих соединений, на которых сосредоточено большинство исследований. [c.378]

    Систематическому изучению А. п. ненасыщенных соединений положили начало исследования 20-х годов Циглера и С. В. Лебедева. В одной из первых работ, относящихся к этому циклу, Циглер выдвинул представление о подобных реакциях как о последовательном металлорганич. синтезе. Такая концепция в принципе совпадает с современным взглядом на сущность полимеризации, инициированной щелочными металлами и металлалкилами. С. С. Медведев и А. Д. Абкин в 1936 обнаружили высокую устойчивость промежуточных соединений, возникающих при натриевой полимеризации бутадиена, и указали, что механизм этого процесса отличен от радикального. Тем не менее в 30-х и даже в начале 40-х годов еще существовала точка зрения о радикальном механизме процессов, инициированных щелочными металлами. Она была окончательно отброшена при появлении новых экспериментальных фактов о строении полимеров и составе сополимеров, образующихся в анионных системах. Как впервые установила А. И. Якубчик с сотр., полимеры диеновых углеводородов, полученные под действием различных щелочных металлов, значительно отличаются по своей структуре друг от друга и от полимеров, образующихся при радикальном инициировании. Весьма важным для понимания механизма полимеризации под влиянием щелочных металлов оказались результаты, полученные в 1950 Уоллингом, Мэйо и сотр. сополимеры стирола с метилметакрилатом, образующиеся при использовании таких инициирующих агентов, принципиально отличаются по своему составу от сополимеров, синтезированных с помощью радикальных и катионных инициаторов. Именно к этому времени относится выделение А. п.в самостоятельный раздел химии полимеров.Периодом особенно интенсивного развития исследований по А. п. (вовлечение значительного числа разнообразных мономеров, расширение круга инициаторов, создание фундамента теории соответствующих процессов) являются последние 10—15 лет. В эти годы в области теории и практики А. п. сложились крупные школы химиков в Советском Союзе (С. С. Медведев и сотр., А. А. Коротков и сотр.) и за рубежом (М. Шварц, М. Мортон в США, Шульц, Керн в ФРГ, Байуотер и Уорсфолд в Канаде и др.). [c.72]


Смотреть страницы где упоминается термин Радикальная полимеризация ненасыщенных соединений: [c.103]    [c.103]    [c.14]    [c.545]    [c.131]    [c.121]    [c.755]    [c.290]    [c.198]    [c.595]    [c.131]   
Смотреть главы в:

АБВ химической кинетики -> Радикальная полимеризация ненасыщенных соединений




ПОИСК





Смотрите так же термины и статьи:

Радикальная полимеризация



© 2025 chem21.info Реклама на сайте