Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная кислота выход при окислении метильных соединений

    Рот 249 сообщил, что при окислении хромовой смесью в течение 1 ч найденная доля групп СНз составила 15,13% при теоретическом значении 15,24%. Однако повторная оценка метода показала значительно более низкие результаты 24 Рот э также утверждает, что группа СНз—СН= дает лишь 85—90%-ный выход уксусной кислоты. Следовательно, при определении соединения, содержащего шесть или более таких групп (например, у-каротин), ошибка может достигать значения, соответствующего содержанию одной С-метильной группы. [c.405]


    Следует помнить, что микроопределения С-метильных групп связано с использованием сильных окислительных агентов. Небольшие изменения экспериментальных условий могут привести к противоречивым результатам. Так, при изменении концентрации хромовой кислоты могут быть получены разные продукты окисления Трудность интерпретации данных, получаемых при определениях С-метильных групп, становится ясной из сообщения Петру и сотр. . По их данным результаты анализов оказываются воспроизводимыми при проведении их только в одинаковых условиях, однако никаких выводов о связи между строением молекулы и выходом уксусной кислоты сделать не удается. Соединения, способные к изомеризации, не всегда дают воспроизводимые результаты. [c.406]

    Опубликован обзор [109], посвященный применению двуокиси селена как окислительного агента. Активные метильные или метиленовые группы часто окисляются этим реагентом. В первом случае получается альдегид, а во втором — кетоп. Хотя глиоксаль был получен из ацетальдегида с выходом 90% [115], этот метод, по-видимому, чаще применяется для окисления метилкетонов, чем альдегидов, содержащих а-водородные атомы. Метильную группу в бензольном кольце редко окисляют до альдегидной, однако это превращение является обычным, если метильная группа присоединена к гетероциклическому кольцу (разд. А 13). В случае метилкетонов реакция заключается в простом кипячении с обратным холодильником либо самого соединения, либо соединения в таких растворителях, как диоксан, этиловый спирт или уксусная кислота. Как правило, выходы невелики. [c.25]

    По оригинальному микрометоду Куна —Рота [1421 метильные группы вместе с атомом углерода, с которым они связаны, окисляют до уксусной кислоты раствором хромовой кислоты в серной кислоте. Условия реакции таковы, что дальнейшего окисления уксусной кислоты не происходит. Уксусную кислоту отгоняют и определяют титрованием в стандартных условиях. Выход уксусной кислоты зависит от окружения С-метильной группы, 8 связи с чем необходимы контрольные определения с соединени- [c.42]

    Кислоты получаются также при окислении метилкетонов или вторичных спиртов типа К—СН(ОН)—СНз гипогалогенитами. Хотя кислоты более высокого молекулярного веса, чем уксусная, обычно получаются с приемлемыми выходами при окислении олефиновых соединений хромовой кислотой, они все же не вполне устойчивы к действию окислителей. Так, при окислении стеариновой кислоты может получиться смесь низших кислот. Уксусная кислота, однако, совсем не взаимодействует с окислителями и часто применяется при окислении спиртов и алкенов в качестве растворителя. Более того, уксусная кислота почти всегда входит в состав продуктов окислительного расщепления в жестких условиях насыщенных и ненасыщенных соединений, содержащих метильные группы, связанные с углеродным атомом. Эта реакция применяется для определения числа присутствующих метильных групп (метод Куна—Рота, 1933). Окисление проводят действием смеси хромовой и серной кислот, избыток реагента восстанавливают гидразином, реакционную смесь нейтрализуют щелочью и добавляют фосфорную кислоту. Уксусную кислоту отгоняют и определяют титрованием раствором щелочи. Природные соединения, содержащие группировку —СНз—С(СН з)=СН—СНг—, образуют один эквивалент уксусной кислоты из каждого такого звена. Как показывает анализ кислоты СНз—(СНг) 16—СООН по Куну—Роту, в ней присутствует одна метильная группа (концевая), в то время как в кислоте СНз—(СНг) —СН(СНз) — (СНг) 8—СООН найдены две С-метильные группы. При окислении гея-диметильной группировки при насыщенном атоме углерода —С (СНз) 2— не образуется уксусной кислоты. [c.425]


    Для окисления углеводородов до альдегидов и кетонов в качестве окислителей лучше всего использовать соединения хрома [4, 16]. Окисление метильной группы в альдегидную протекает легко в том случае, если она присоединена к ароматическому кольцу. Хромилхлорид Сг02С1г, например, окисляет о-, м- и п-ксилолы в соответствующие толуолкарбальдегиды с выходами 60—80% (54]. Хромовая кислота в уксусном ангидриде [c.335]

    Окисление метиленовой группы в оксогруппу является гораздо более общим процессом, чем окисление метильной груп-ПЫ в альдегидную, поскольку связь Свтор— Н гораздо более реакционноспособная, чем связь Сперв—Н, а образующийся кетон менее чувствителен к дальнейшему окислению, чем альдегид. Для окисления метиленовых групп, особенно активированных, также широко используют соединения хрома (VI). Интересным случаем окисления является окисление 1-хлоркамфана хромовым ангидридом в уксусной кислоте при этом в качестве основного продукта с выходом 40% получается 1-хлорноркамфо-ра [56] [схема (8.23)]. [c.336]

    Реакция окисления используется также при определении метильных групп, связанных с углеродом. Большинство органических соединений при окислении горячей хромовой кислотой быстро превращается в двуокись углерода и воду. Если молекула содержит группировку СН3С, то в качестве промежуточного продукта в процессе реакции получается уксусная кислота H3GO2H. Это соединение несколько более устойчиво к окислению, чем другие промежуточные продукты, поэтому его можно выделить из реакционной смеси перегонкой с паром и определить титрованием. Выходы (на группу H.j ) колеблются от О до 100%, но все же такой путь часто позволяет определить минимальное число концевых метильных групп в молекуле неизвестной структуры. Метод имеет и свои ограничения. Соединения, содержащие группы (СНд)2 С и (СНд)з С, могут дать максимум один моль уксусной кислоты на группу, а обычно гораздо меньше. Многие соединения, в которых метиль-ная группа присоединена непосредственно к ароматической системе, не образуют уксусной кислоты. Присутствие функциональных групп в молекулах, [c.39]

    Эберсон [25] исследовал анодное окисление ароматических соединений в уксусной кислоте при этом изучалось влияние таких переменных, как природа катиона и аниона и величина анодного потенциала. Ацетоксилирование по а-атому углерода боковой цепи алкилароматических соединений не требует присутствия ацетат-иона. Напротив, ацетоксилирование в ароматическое ядро не происходит в отсутствие ацетат-иона. Так, этил-бензол дает исключительно а-ацетоксипроизводное при использовании в качестве фонового электролита перхлорат- или този-лат-анионов, тогда как в присутствии ацетат-аниона образуется смесь а-ацетоксипроизводного и трех изомерных этилфенил-ацетатов (соотношение выходов продуктов замещения в ароматическое ядро и продуктов замещения в боковую цепь равно примерно 1 1). Изотопный эффект в случае ацетоксилирования в боковую цепь этилбензола-a-d имеет среднее значение W d = = 2,6 0,3. Таким образом, в переходном состоянии лимитирующей стадии происходит растяжение связи С—Н. Это аналогично тому, что наблюдается [26] при гомогенном ацетоксилировании метильной группы я-метиланизола под действием ацетата марганца (III) в ледяной уксусной кислоте. Сходство распределения продуктов, полученных при анодном ацетоксилировании л-метиланизола и при ацетоксилировании под действием ацетата марганца (III), подтверждает предположение об участии бензильных катионов в качестве интермедиатов при образовании продуктов а-окисления. [c.198]

    В попытках изменить структурную направленность реакции была проведена конденсация диена (169) с ацетатом циклогексен-1-ол-3-она-6 [314]. Получающийся при этом аддукт (191) после удаления 15-кетогруппы представлял бы собой ценное исходное сырье для синтеза эстрона (ср. схему 19). К сожалению, выхоД этого аддукта не превышал 5%, а остаток состоял из продуктов отщепления ацетоксигруппы и осмоления диена и диенофила. Структурную направленность реакции удалось также изменить при использовании диена (195), представляющего собой енол-ацетат альдегида (194), полученного из метокситетралона (8) в три стадии с общим выходом 60% [337]. Ацетоксигруппа в аддуктах этого диена сохраняется лишь при конденсации с бензохиноном, а при реакциях с 2,5-ксилохиноном и 2,5-диметилциклопентен-1-дионом-3,4 происходит отщепление уксусной кислоты от промежуточно образующихся аддуктов типа (196). Строение аддукта (199) было доказано окислением и дегидрированием в производное фенантрена (198), а аддукта (197) — в 2-метил-7-метоксифенаптрен [337—340]. Таким образом, при этих конденсациях образуются соединения с ангулярной метильной группой при jg, как у природных стероидов, т. е. введение в диен ацетоксигруппы надлежащим образом изменяет структурную направленность. [c.118]


    Непосредственное гидрирование и ангулярное метилирование кетокислоты (345) дает только нужный 10р-эпимер кетокислоты (351), но с очень плохим выходом. Поэтому было изучено ангулярное метилирование трициклических полупродуктов с пятичленным кольцом О в надежде улучшить методику образования асимметрического центра Сщ [1031]. Введение в трициклический кетон (315) вицинальной 16,17-гликольной группировки было осуществлено новым методом — реакцией с иодом и ацетатом серебра во влажной уксусной кислоте. При этом, помимо 71% 1бр, 17р-изомера (338), было получено 2,5% 16а, 17а-гликоля [999, 1031]. Таким образом, пространственная направленность реакции в данном случае противоположна имеющей место при окислении А -связи осмиевым ангидридом (ср. схему 109), что объясняется различным механизмом этих реакций В то время как при реакции с осмиевым ангидридом цисЛ%, 1-диол с а-конфигурацией гидроксильных групп образуется непосредственно, получение г ис-16р, 17р-диола при окислении иодом и ацетатом серебра является результатом обменной реакции первоначально образующегося тракс-продукта с вальденовским обращением у одного центра. Расщепление гликоля (338) тетраацетатом свинца и циклизация полученного диальдегида привели к трициклическому кетоальдегиду (339). Альдегидная группа в нем защищалась после восстановления двойной связи в кольце В путем образования циклического ацеталя с этиленгликолем. Необходимая для наращивания кольца А реакция Михаэля в данном случае протекает по Сю, т. е. в отличие от соединений с шестичленным кольцом В здесь не требуется защиты положения 6. Цианэтилирование соединения (339), гидролиз и лактонизация полученного продукта позволили стереоселективно получить еноллактон (342), которому на основании ИК-спектра была придана неприродная 10а-метилконфигурация. Таким образом, использование полупродуктов с пятичленным кольцом В позволяет избавиться от блокирования Се, но не улучшает стереохимии образования кольца А. Поэтому было решено объединить полученные достижения, использовав введение ангулярной метильной группы при Сю на последней стадии (надлежащая стереохимия) в кетокислоту с пятичленным кольцом В (отсутствие блокирования Се) [1031]. Трициклическая кетокислота (206) в четыре стадии переводилась в ацетонат (344), который при сужении кольца В и защите альдегидной группы дал циклический ацеталь (343). Ангулярное метилирование последнего с высоким выходом привело к природному 10р-метилизомеру, который при последовательном проведении еноллактонизации, реакции Гриньяра и циклизации дал кетоацеталь [c.270]


Смотреть страницы где упоминается термин Уксусная кислота выход при окислении метильных соединений: [c.473]    [c.295]    [c.133]    [c.133]    [c.155]    [c.43]   
Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Выход соединения



© 2024 chem21.info Реклама на сайте