Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Люминесцентный химический

    Люминесцентный химический анализ, или, правильнее, флуоресцентный анализ, основан на вынужденной люминесценции различных химических соединений под действием облучения их растворов кварцевой лампой как источником ультрафиолетовых лучей. В аналитической химии применяют также люминесцентные индикаторы, люминесцентную хроматографию и люминесцентный микроскоп. [c.480]


    Химический люминесцентный анализ. Для определения химического состава вещества могут быть использованы его люминесцентные свойства. Соответствующие химические реакции называются флуоресцентными. Так, для люминесцентного химического анализа могут быть использованы реакции, в результате которых анализируемое вещество приобретает способность флуоресцировать или, если оно обладало уже этим свойством, изменяет характер его свечения. [c.155]

    Этот вид анализа позволяет обнаруживать и определять содержание ничтожно малых количеств вещества, порядка долей гаммы. Методы анализа при тщательной отработке носят во многих случаях характер экспрессных. В отношении некоторых веществ оказывается возможным определять их содержание в присутствии других компонентов без предварительного выделения в индивидуальном состоянии. Как правило, для анализов можно довольствоваться ничтожно малыми количествами биологического сырья. Эти особенности химического люминесцентного анализа делают его специфически удобным при решении задач, стоящих перед биологом и медиком. Методами химического люминесцентного анализа определяют следующие группы биологически важных веществ порфирины, витамины (В,, В и другие), некоторые антибиотики, эстрогенные вещества, адреналин, ряд лекарственных веществ и т. д. Самые методы анализа и соответствующая литература приведены в гл. XII, Б. Здесь мы остановимся только на простейшей форме люминесцентного химического анализа, не требующего проведения химических реакций и сводящегося в основном к наблюдению люминесценции искомого вещества. Как уже указывалось [c.296]

    Сложные органические молекулы, какими являются люминесцентные химические реактивы, имеют многочисленные электронные и колебательные энергетические уровни. Даже при относительно низких температурах они обладают очень большим суммарным запасом колебательной энергии, который приближается к величине энергии электронного возбуждения. В них может происходить перераспределение колебательной энергии по различным уровням и значительное взаимодействие между движением электронов и колебаниями ядер [8]. В связи с этим в спектрах поглощения и флуоресценции растворов таких веществ линии, соответствующие отдельным электронным переходам, сливаются между собой и образуют широкие диффузные полосы протяженностью до 100 ммк и более. Схема возможных электронных переходов в таких молекулах представлена на рис. П-2 [19, 37, 38]. При их возбуждении и переходе электронов с основного на возбужденные уровни одновременно возрастает и колебательная энергия молекул поэтому они поглощают кванты, обладающие значениями /zv , большими, чем величина кванта /ivo = i— о, который отвечает разности энергии между самыми низкими из возбужденных (I) и основных (0) подуровней, соответствующих данному тепловому состоянию молекул. Но эта избыточная энергия А практически мгновенно перераспределяется между другими многочисленными энергетическими уров- [c.31]


    Метод позволяет получать результаты определения группового химического состава битумов, близкие к полученным по описанной выше методике [3]. В то же время для проведения анализа люминесцентным методом требуется меньше исходного материала и длительность анализа несколько меньшая. Для осаждения асфальтенов можно также использовать изооктан. [c.9]

    Выделение металлов и реакции восстановления растворенных веществ на катоде, которым является капающая ртуть, лежат в основе полярографии — широко применяемого метода химического анализа (предложен Я. Гейровским в Чехословакии в 1922 г.). Ионизированный пар ртути используют в различных ионных приборах — люминесцентных лампах дневного света, ртутных кварцевых лампах и др. Ряд соединений ртути применяют в полупроводниковых приборах. Широко используются ртутные термометры. [c.600]

    Помимо теплового излучения газы, жидкости и твердые тела могут давать люминесцентное излучение, возбуждаемое под воздействием света, электрического тока, химических реакций и других возбудителей (кроме теплового). По Видеману-Вавилову, к люминесценции относят излучение, превышающее тепловое излучение при данной температуре и имеющее длительность, значительно превосходящую период возбуждающих световых волн [1]. Явления люминесценции классифицируют по типу возбуждения и характеристикам элементарных процессов. [c.93]

    В настоящее время имеются экспериментальные данные, свидетельствующие о наличии определенного параллелизма между характером люминесцентного свечения, канцерогенной активностью и химическим строением конденсированных полициклических ароматических углеводородов [32]. Предпринимаются многочисленные попытки контролировать степень канцерогенности каменноугольных и сланцевых смол при помощи методов люминесцентного анализа. Углеводородные смеси, обладающие канцерогенной активностью, имеют [c.283]

    Сравнение цветных снимков люминесцентного свечения нефтяных смол различной степени разделения и химических превращений показывает довольно заметное и легко уловимое невооруженным глазом различие в ширине и интенсивности разных полос свечения. [c.488]

    Применение люминесценции для аналитических целей включает широкую область использования ее для идентификации веществ, для обнаружения малых концентраций веществ для контроля изменений, претерпеваемых веществом для определения степени чистоты веществ. Широко применяются измерения люминесценции при изучении кинетики обычных химических реакций. Высокая чувствительность метода позволяет фиксировать малую степень превращения, а иногда по люминесценции промежуточных соединений становится возможным установить механизм химической реакции. Люминесцентные методы используются в биологии, в частности, для исследования структуры белков методом флуоресцентных зондов и меток. [c.49]

    Определение непроницаемости гуммировочных материалов по интенсивности люминесцентного свечения. Сущность метода заключается в определении (при нормальных и повышенных температурах) глубины проникновения жидких агрессивных сред в гуммировочные материалы по изменению степени интенсивности люминесцентного свечения при освещении ультрафиолетовыми лучами введенных в гуммировочный материал люминесцентных веществ. Образцы в виде круга толщиной 2-4 мм и диаметром 23 мм — для испытаний при нормальной и 68 мм — при повышенной температурах — изготовляют из резиновой смеси, в которую при смешении на вальцах вводят люминесцирующее вещество — люминофор-59 в количестве от 0,01 до 0,1 масс. ч. на 100 масс. ч. каучука для резин, не содержащих углеродных саж, и от 0,5 до 1,0 масс. ч. на 100 масс. ч. каучука для резин, содержащих углеводородные сажи. Толщину образцов до испытания тщательно замеряют с точностью до 0,01 мм. Образцы испытывают с помощью специальных приборов в течение определенного времени (от 1 ч до нескольких суток) в зависимости от химической стойкости исследуемых образцов. [c.138]

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]


    При помощи люминесцентного анализа можно определять химический состав вещества в отдельных очень малых его участках, выявлять мелкие включения, изучать процесс превращения вещества. [c.125]

    Повышенный интерес к люминесцентному анализу за последние годы вызван поставленной перед аналитической химией задачей определения малых количеств различных элементов — до миллионных долей процента. Преимущество люминесцентного химического анализа перед обычным — его исключительная чувствительность. Люминесценцию можно наблюдать при очень малых концентрациях люминесцирующего вещества. Как правило, методика выполнения люминесцентных реакций микрохимическая капельная, микрокри-сталлоскопическая и т. д. Наличие искомого вещества устанавливают или по появлению люминесценции, или по ее тушению, полному или [c.148]

    Преимущество люминесцентных химических реакций перед обычными — их исключительная чувствительность люминесценцию можно наблюдать при очень малых концентрациях флуоресцирующего вещества, и это, как уже выше указывалось, специфически характерно для явления флуоресценции, а следовательно, и для ириемов, основанных на его использовании. Кроме того, включение флуоресцентных реакций в число аналитических увеличивает ассортимент последних в некоторых случаях, когда реакция на химический индивидуум отсутствует, заполнение пробела является существенным. [c.67]

    Люминесцентный химический аналпз обладает исключительной чувствительностью, ЧТО является незаменимым качеством для целей санитарно-химического анализа люминесценцию мол- по наблюдать при очень малых концентрациях люминесццрующего вещества. Методика выполнения люминесцентных реакций — микрохимическая (капельная). Наличие и к0 0г0 вещества устанавливают либо по появлению люминесценции, либо по се тушению, полному илн частичному. Люминесцентные реакции во многих случаях не требуют разделения смесн и выделения искомого вещества. [c.593]

    В люминесцентном химическом анализе известны органические красители, которые изменяют интенсивность или цвет флуоресценции при изменении pH раствора. Их применяют в титриметрических методах анализа, основанных на окислительно-восстановительных реакциях. Кроме того, некоторые флуо ресцирующие органические вещества в адсорбированном состоянии теряют способность к свечению они нашли применение в осадочном титровании в качестве адсорбционных флуоресцирующих индикаторов при определении некоторых катионов (Ag РЬ, Hg и др.) и анионов, и в первую очередь галогенидов. [c.217]

    Поскольку состав и свойства содержащихся в сере битуминозных веществ оказывают влияние на весь цикл переработки серных руд, потребовалась разработка специальных (в ряде случаев весьма сложных) методов анализа — люминесцентного, химического и ИК-спектроскопического. Для характеристики органического вещества, содержащегося в серной руде и продуктах ее переработки — вплоть до товарной серы, приходится определять общее содержание органического вещества (по содержанию органического углерода), групповой состав органического вещества, извлекаемого хлороформом (битумоид А) и спйртобензольной смесью (битумоид С, а также содержание гуминовых кислот и остаточного органического вещества. [c.26]

    Контрольные операции неизбежно удлгшяют производственный цикл, задерживают поступление сырья и полуфабрикатов па дальнейшую обработку, уменьшают скорость оборачиваемости оборотных средств, поэтому особенно важно обеспечить нх быстроту. Методы экспресс-контроля позволяют полностью автоматизировать контрольные функции, применяя средства дистанционрюго контроля, фотоэлектронную автоматику, хроматографический, спектрометрический, реитгепоскопический, колориметрический, химический, люминесцентный и другие современные методы контроля. [c.123]

    Дальнейшее развитие средств ААИ идет по пути совершенствования эксиериментальных методов визуализации объектов исследования — применения адсорбционных индикаторов для выделения определенных элементов структуры, применения различных люминесцентных индикаторов для визуализации потоков, применения рентгеновских ионных анализаторов в качестве приставок к электронным микроскопам, позволяющих проводить высокоспецифичный анализ распределения химических элементов в структуре [17] и многих других. Одновременно быстро развиваются методы [18] и средства для оптимизации и машинной обработки изображения. Увеличение объема памяти и быстродействия вычислительных машин, примененпе систем искусственного интел.лекта способствует развитию систем распознавания динамических образов и соответственно расширению возможностей анализа быстроиротекающих процессов и построению динамических моделей объектов со сложной пространственной структурой. [c.126]

    Такое обобщение удобно для процессов, в которых необходимо сосредоточить основное внимание на изменении качества сырьевой фракции или ее влиянии на результаты процесса. Его использование в чистом виде для процессов глубокого разложения затруднительно, так как трудно определить, какая доля продукта (например, газа) образовалась за счет одной части сырья, какая — за счет друго11, как реагируют компоненты промежуточных продуктов и т. д. Очевидно также, что конкретное применение данного метода требует значительно большего объема химических анализов сырья и продуктов. При использовании этого метода может оказаться полезным люминесцентно-хроматографический анализ углеводородных смесей [58]. [c.181]

    Нефти и высококипящие нефтепродукты обладают замечательным свойством светиться под действием ультрафиолетовых лучей. На нснользовании этой особенности нефтей основаны методы люминесцентного анализа для нознания химической природы сложных молекул, входящих в состав нефтей и вызывающих люминесцентное свечение. Фотолюминесценция или излучение, возникающее при возбуждении светом, как правило, наблюдается у молекул довольно сложного химического состава и строения. Существует, следовательно определенная связь между строением вещества и склонностью его к люминесценции. Поэтому исследование спектра люминесценции нефтепродуктов может дать весьма ценные сведения для суждения о строении ароматических структурных звеньев сложных молекул, входящих в состав высококипящих нефтяных фракций. [c.482]

    В настоящее время люминесцентное свечение в большинстве случаев не позволяет установить определенную количественную связь его с химическим строением люминесцирующих веществ, том не менее методы, основанные на использовании этого типа свечения, позволяют весьма успешно решать качественно, а нередко и нолуколи-чественно некоторые практически важные задачи. Так, при визуальном наблюдении общей картины люминесцентного свечения нефтяных смол и продуктов их гидрирования и окисления можно составить себе представление о направлении и глубине химических превращений этих веществ. [c.487]

    Люминесцентный аналпз, дополненный цветной фотографией, становится вполне надежным объективным методом качественной оценки химических изменении составных частей высокомолекулярной части нефти в процессах ее разделения, исследования и химико-технологической переработки. Метод этот позволяет сравнительно просто и надежно документировать результаты полезных анализов комионентного состава битумов. [c.488]

    Широко применяется люминесцентный анализ при изучении смолисто-асфальтеновых веществ [97, 100] и ванадилпорфири-нов нефти [101]. В молекулах этих соед1шеиий присутствуют фрагменты ароматических структур, являющихся флуорофора-ми и обусловливающими их способность к люмниесцепции. Сделан вывод о достаточно устойчивой структуре молекул асфальтенов, причем междз молекулами существуют ассоциативные связи. Область свечения молекул асфальтенов занимает широкий интервал — от 480 до 700 нм. Трудности, возникающие ири люминесцентном анализе этих соединений, связаны с тем, что не существует вполне определенной химической стру туры молекул асфальтенов. Смолисто-асфальтеновые вещества представляют собой смеси различных молекул. [c.57]

    В первом случае отдел контроля производства распадается на ряд лабораторий физическую, аналитическую, физико-химическую, физико-механическую. В научно-исследовательский отдел могут входить как указанные лаборатории, так и лаборатории точных методов анализа (рентгенографического, спектрального, люминесцентного, электроноскопического и др.), лаборатории синтезов, пилотные установки. В других случаях целесообразно иметь по одной лаборатории каждого наименования, а в них по мере надобности исследовательские группы, выделяя при этом общие для всех работников ЦЛ одну или несколько лабораторий по синтезу, катализу, антикоррозионным покрытиям и т. д. Последнее зависит от номенклатуры продукции, уровня специализации и масштаба производства в целом и по отдельным продуктам, а также от наличия и квалификации кадров. [c.51]

    Люминесцентные методы включают в себя исследования с использованием флуоресценции (флуориметрия) и фосфоресценции (фосфориметрия). Наиболее широко люминесцентные измерения используются как методы анализа и контроля за протеканием химических и биохимических реакций, а также для кинетических исследований быстрых реакций электронно-возбужденных молекул. [c.49]

    Для исследования кинетики быстрых и сверхбыстрых химических реакций большие возможности дают люминесцентные методы. Эти методы особенно важны для фотохимических реакций. Иногда удается изучать быстрые реакции возбужденных молекул с П0М0Щ11Ю спектров флуоресценции ири стационарном возбуждении (см. гл. III). Прямое измерение кинетики быстрых реакций возбужденных молекул оказывается возможным путем наблюдения кинетики люминесценции. Поскольку интенсивность испускаемого света ироиорциональна концентрации испускающих частиц, то кинетические кривые люминесценции иеиосредственно отражают изменение коице]1трации возбужденных молекул во времени. [c.89]

    В производстве малотоннажной химической продукции установлены задания по обеспечению в 2000 г. выпуска около 114 тыс. т синтетических красителей за счет преимущественного развития производства их прогрессивных групп, до 380 тыс. т текстильно-вспомогательпых веществ для текстильной и других отраслей промышленности. По сравнению с 1985 г. предусмотрено в 2—2,3 раза увеличить производство химических добавок для полимерных материалов, организовать выпуск новых добавок для повышения качества пластических масс, каучука, шин и резинотехнических изделий. Возрастет производство особо чистых веществ, их ассортимент расширится в 2 раза против запланированного на 1985 г., а биохимических реактивов и препаратов — в 3,5 раза. Путем освоения высокоэффективных цветных фото-и кинопленок, прогрессивных видов бессеребряных фотоматериалов намечено снизить расход серебра на их изготовление при одновременном увеличении производства п повышении качества кинофотоматериалов. Возрастет выпуск химических продуктов для цветного и черно-белого телевидения, для люминесцентных ламп, позволяющих уменьшить энергопотребление. Существенно будет расширен ассортимент особо чистых веществ для микроэлектроники и волоконной оптики. [c.183]

    В пособии излагаются теоретические основы наиболее важных, распространенных и перспективных физико-химических методов анализа эмиссионного спектрального анализа, абсорбционной спектроскопии, люминесцентного анализа, спектроскопии ЯМР, нефелометрии и турбидиметрии, радиометрических методов аналнза, копдуктометрии, потенциометрии, полярографии, электролиза и кулоно-метрии, кинетических методов анализа, хроматографии, масс-снектрального апа- [c.343]

    Чтобы подчеркнуть различие химических веществ по их чистоте, наиболее чистые вещества, применяющиеся при химическом анализе, а также для научных исследований, уже в начале текущего столетия были объединены под общим названием реактивы, которое часто используется и в настоящее время. В Советском Союзе эти вещества делятся на четыре категории чистые (ч), чистые для анализа (ч. д. а.), химически чистые (х. ч.) и особо чистые (ос. ч.). Перечень нежелательных примесей и их предельное содержание лимитируются техническими условиями. Поэтому содержание примесей в двух различных реактивах одной и той же категории, например чистый , может быть различным и определяется в основном трудностью освобождения реактива от той или иной примеси, а также пределом обнаружения используемого метода анализа. Отсюда ясно, что приведенная классификация реактивов является весьма условной. То же самое можно сказать и о таких бытующих в практике определениях степени чистоты вещества, как спектрально чистое , хроматографически чистое , криоскопически чистое , люминесцентной чистоты и т. д. [c.6]


Библиография для Люминесцентный химический: [c.201]    [c.313]   
Смотреть страницы где упоминается термин Люминесцентный химический: [c.114]    [c.114]    [c.139]    [c.484]    [c.485]    [c.486]    [c.487]    [c.427]    [c.250]    [c.210]    [c.338]    [c.3]    [c.2]    [c.343]    [c.51]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Виды люминесцентного анализа. Люминесцентный анализ обнаружения Химический люминесцентный анализ БИБЛИОГРАФИЯ Монографии и обзоры

Люминесцентный метод в применении к маслам в энергетике и химической промышленности

Некоторые пути использования люминесцентного излучения химическом анализе

Химический люминесцентный анализ

Химический люминесцентный метод определения неорганических веществ



© 2025 chem21.info Реклама на сайте