Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрафиолетовый люминесцентный микроскоп

    Люминесцентный химический анализ, или, правильнее, флуоресцентный анализ, основан на вынужденной люминесценции различных химических соединений под действием облучения их растворов кварцевой лампой как источником ультрафиолетовых лучей. В аналитической химии применяют также люминесцентные индикаторы, люминесцентную хроматографию и люминесцентный микроскоп. [c.480]


    Люминесцентная микроскопия. Рассматривают сухой порошок, реже поперечный срез листа, приготовленный из цельного или резаного сырья после предварительного размягчения во влажной камере. Наблюдается собственная (первичная) флюоресценция сырья в ультрафиолетовом свете. Наиболее яркое свечение имеют кутикула, клеточные оболочки механических тканей, элементов ксилемы, волосков, содержимое отдельных клеток или тканей мезофилла, эпидермиса листа в зависимости от их химического состава. Листья некоторых растений характеризуются ярким и специфическим свечением содержимого железок, секреторных каналов и вместилищ в зависимости от химического состава содержимого. [c.255]

    Препараты в люминесцентном микроскопе рассматривают в ультрафиолетовом свете, наблюдая первичную (собственную) люминесценцию. [c.285]

    В СССР метод люминесцентной микроскопии разработан М. Н. Мейселем. Суть метода в следующем. Некоторые биологические объекты способны при освещении коротковолновыми лучами (сине-фиолетовыми, ультрафиолетовыми) поглощать их и исп скать лучи с более длинной волной (светиться желто-зеленым или оранжевым светом). Это так называемая собствен-н а я, или первичная, люминесценция, [c.18]

    Люминесцентная микроскопия. Рассматривают поперечный срез после увлажнения плода во влажной камере, реже сухой порошок. Наблюдают первичную (собственную) флюоресценцию сырья в ультрафиолетовом свете. Видна структура околоплодника, где особенно ярко выделяются механические элементы, секреторные каналы и их содержимое, проводящие пучки. Ярко флюоресцирует эндосперм семени и ткани зародыша. Флюоресценция обусловлена химическим составом тканей и для каждого вида специфична. [c.259]

    Характер свечения не зависит от X, но определяется спектральным составом возбуждающего света. При малых количествах TIX это явление можно наблюдать в люминесцентном микроскопе. При очень низких температурах, порядка —160°, хлорид таллия обладает синим свечением [758], но вряд ли такой способ наблюдения флуоресценции найдет применение в аналитической химии. Для нас важно то обстоятельство, что и растворы солей таллия способны флуоресцировать фиолетовым светом [56, 57, 170, 748]. Флуоресценция возбуждается только коротковолновыми ультрафиолетовыми лучами ( l<2500 А) она обусловлена гидратированными ионами таллия и может быть замечена даже в 10 -моляр-ных растворах [170]. Фториды вызывают тушение флуоресценции соли таллия в растворе [20]. Тущение вызывают также ионы Fe2, J" и ОН [56, 57]. [c.32]


    Люминесцентная микроскопия. Рассматривают сухой порошок травы или листа. Наблюдается собственная (первичная) флюоресценция сырья в ультрафиолетовом свете. В порошке, кроме элементов листа, яркая флюоресценция характерна для обрывков проводящих пучков стебля (сосуды ксилемы и механические волокна) хорошо видна пыльца обрывки эндосперма семени обычно имеют яркое голубое свечение (жирное масло). [c.257]

    Люминесцентная микроскопия. Рассматривают сухой порошок или отдельные части соцветия, цветка наблюдается собственная (первичная) флюоресценция сырья в ультрафиолетовом свете. Наиболее характерное свечение имеют кутикула, различные трихомы (волоски, железки), механические элементы, пыльцевые зерна, включения клеток в зависимости от их химического состава. [c.258]

    Люминесцентная микроскопия. Рассматривают поперечный срез после размягчения семени во влажной камере. Наблюдают первичную (собственную) флюоресценцию сырья в ультрафиолетовом свете. Четко выделяются отдельные слои семенной кожуры, ярко флюоресцируют одревесневшие ткани флюоресценция эндосперма и зародыша зависит от химического состава содержимого клеток жирное масло обусловливает яркую голубую флюоресценцию эндосперма и зародыша. [c.261]

    Люминесцентная микроскопия. Рассматривают поперечные срезы коры или порошок (соскоб) в ультрафиолетовом свете. [c.262]

    Высокой чувствительностью обладает метод прямой люминесцентной микроскопии (вносимый при обработке препарата флюорохром связывается с полисахаридами клеточной стенки гриба, обеспечивая затем яркое свечение клетки при ультрафиолетовом облучении). [c.315]

    Очень часто неудачи предварительного рентгеновского исследования проистекают от того, что объект исследования оказывается многофазной системой, что не всегда возможно предвидеть. В таких случаях некоторую пользу мог бы привнести люминесцентный микроскоп, так как различные участки объекта могут обнаруживать различное свечение под действием ультрафиолетовых лучей. [c.148]

    Реакция может выполняться либо как капельная на бумаге, либо как микрокристаллоскопическая с последующим наблюдением под люминесцентным микроскопом. Каплю исследуемого раствора объемом 0,005 мл наносят на кварцевое предметное стекло и рядом помещают каплю раствора цинкуранилацетата. При соединении капель, спустя 1—2 мин, выпадают октаэдры, которые при рассматривании в ультрафиолетовых лучах имеют желто-зе-леную люминесценцию. Слишком длительная обработка капель может привести к выпадению из раствора реагента, имеющего вид длинных светящихся игл, что затрудняет или делает невозможным открытие иона натрия. [c.207]

    Иногда следует вести наблюдение в ультрафиолетовом свете, применяя люминесцентный микроскоп, так как многие люминесцентные реакции обладают весьма большой чувствительностью [c.181]

    Люминесцентный микроскоп. Для наблюдения люминесцирующих кристаллических веществ можно пользоваться люминесцентным (флуоресцентным) микроскопом ". Этот прибор представляет собою обычный микроскоп, снабженный соответствующим осветителем (ртутной лампой) и светофильтрами, задерживающими видимые лучи света, но пропускающими ультрафиолетовые лучи. [c.34]

    Разрешение (Н) есть наименьшее расстояние между точками детали в препарате, которые еще не сливаются в изображении, видимом в микроскоп или на фотографии. К = Я/2-(ч. а.), где X — длина волны применяемого света, а ч. а. — числовая апертура — мера светособирающей способности объектива. Для получения наименьших значений К следует применять коротковолновый свет, хотя, к сожалению, свет наиболее эффективной части спектра (а именно ультрафиолет в области 365 нм) не воспринимается глазом и не проходит через стекло. Чтобы использовать преимущества ультрафиолетового света, например в случае люминесцентной микроскопии, нужна оптика из кварца или плавикового шпата (флюорита) и необходимы непрямые методы наблюдения. Наи-лучшие результаты с видимым светом получают в жел-то-зеленой области спектра, поскольку аберрации объективов минимизируются именно для этой области длин волн. С точки зрения разрешения эта область, однако, является сравнительно длинноволновой. [c.24]

    Битумоиды обладают способностью люминесцировать в длинноволновой области ультрафиолетового спектра, поэтому люминесцентная микроскопия и спектроскопия широко используются для их диагностики. [c.24]

    С помощью люминесцентного микроскопа также изучают живые, нефиксированные клетки. Люминесценцией называется свечение объекта в результате поглощения световой энергии вызываемое ультрафиолетовыми, а также синими и фиолетовыми лучами. Многие клеточные структуры обладают способностью к собственной (первичной) люминесценции. Так, хлорофилл, содержащийся в хлоропластах растительных клеток, обладает ярко-красной люминесценцией довольно отчетливое свечение имеется у витаминов А и В, а также некоторых бактерий. [c.8]

    В зависимости от того, из какого вещества приготовлен флюоресцирующий экран, в- поле зрения микроскопа можно наблюдать различную цветную картину. Отфильтровывая от общего ультрафиолетового излучения лампы только те лучи, которые отразились от данного минерала, и изготавливая экран двухслойным, можно в поле зрения оптического микроскопа видеть три различных цвета, например синий, зеленый (люминесцентные) и красный (вследствие использования прямого красного света источника). [c.125]


    Л. Б. Берма н, В. Н. Ш а л у м о в и ч, ДАН СССР 103, № 1 (1955). Исследование конш лягушки и специально ее я елез при помощи люминесцентной и ультрафиолетовой микроскопии. [c.302]

    Производные антрацена (реакция микросублимации). На предметное стекло ставят трубку диаметром 1,5 см и высотой 2 см. Внутрь стеклянной трубки помещают небольшое количество испытуемого порошка (или со-скоба), сверху накрывают другим предметным стеклом, ставят на асбестовую сетку, закрепленную в штативе, и подогревают. Пламя горелки следует держать от предметного стекла на расстоянии 5—7 см. На поверхность стекла, которое служит для улавливания сублимата, помещают кусочки фильтровальной бумаги и смачивают время от времени холодной водой. Через некоторое время на нижней стороне стекла появляется налет. Под микроскопом в сублимате видны тонкие желтые иголочки, которые в ультрафиолетовом свете (люминесцентный микроскоп) имеют яркое желтое или оранжево-красное свечение. В 5% спиртовом растворе едкого кали сублимат растворяется с красным окрашиванием, [c.281]

    Битумоиды, так же как и нефти, люминесцируют в длинноволновой части ультрафиолетового света. Это свойство позволяет изучать их, не извлекая из породы, с помощью люминесцентной лампы или люминесцентного микроскопа. Установлено, что соотношение битумоидов с вмещающими породами (битуминозные текстуры) бывает различным. Выделяется равномерная битуминозная текстура — в этом случае битумоиды в виде тонкодисперсной массы равномерно распределены в породе. Иногда отмечается четкая дифференциация битумоидов на тяжелые и легкие компоненты, причем легкие компоненты обычно концентрируются в менее плотных участках породы. При неравномерной текстуре порода селективно насыщена битумоидами, они могут концентрироваться по порам и трещинам. Неравномерные текстуры чаще всего характерны для миграционного эпигенетичного битумоида. [c.217]

    Различают собственную (первичную) и наведенную (вторичную) флюоресценцию. При первичной флюоресценции исследуемый объект содержит вещества (витамины, пигменты и другие продукты обмена), способные флюоресцировать при освещении их ультрафиолетовыми лучами. Большая часть объектов микроскопии не обладает собственной флюоресценцией, поэтому при люминесцентной микроскопии их обрабатывают красителями (флюорохромами), способными флюоресцировать. В качестве флюорохромов используют аурамин (для микобактерий туберкулеза), акридиновый желтый (для гонококков), корифосфин (для коринебактерий дифтерии), флюоресцеинизотиоцианат, или ФИТЦ (для изготовления меченых антисывороток) и др. [c.10]

    Наиболее четкие и быстрые результаты дает люминесцентная микроскопия, в частности подсчет живых и мертвых клеток в ультрафиолетовом свете с помощью микроскопов МЛ-1, МЛД-1. Микроскопируется обычный водный препарат или же, для мелких объектов, требующих иммерсионных систем, бактериальный фильтр с нанесенным на него определенным объемом суспензии (фильтрование через бактериальный фильтр № 4-5 с помощью воронки Зейтца). [c.201]

    Наилучшие результаты получены при при.менении красителя коричневого основного, ранее неизвестного в качестве гасителя люминесценции. Коричневый основной дает черно-коричневый фон ири люминесцентной микроскопии, устойчив к действию ультрафиолетовых лучей, хорошо связывается с фильтром, равномерно его окрашивает, не разрушает материал фильтра. Гасящие свойства не распространяются на флуорохромируемые объекты. Разработанный способ гашения люминесценции мембранных фильтров позволяет обрабатывать фильтры заранее и длительно их хранить в темноте (Т. 3. Артел-го-ва, Л. Е. Корш, 1973). [c.95]

    Для получения флуоресценции большей интенсивности необходимо, чтобы (как и во всякой оптической установке) вся система была хорошо собрана и прочно смонтирована. Обычно установка люминесцентного микроскопа слагается, помимо микроскопа, из следующих элементов из источника, возбуждающего излучение, из светофильтра — черного стекла,— который поглощает видимую часть возбуждающего света, из прозрачной для ультрафиолетового излучения линзы, которая концентрирует падающий свет на нижнее зеркало-рефлектор микроскопа или на столик микроскопа, и из бледно-желтого светофильтра, надеваемого на окуляр его назначение — предохранять глаз от фиолетовых лучей, которые проходят через вудовский светофильтр, если он для них немного прозрачен. Как ясно из вышесказанного, предметные стекла тоже должны быть прозрачны для ультрафиолетовых лучей, на покровные же это требование яе распространяется. [c.75]

    Для приготовления постоянных препаратов флуорохромированные срезы или фиксированные мазки на предметных стеклах быстро промывают в дистиллированной воде или буфере, проводят через 96°-ный спирт, карбол-ксилол и заключают в акриловый клей, полистирол или винилнн. Акриловый клей представляет собой раствор метакриловой смолы, поли-меризованной в ксилоле. Он быстро высыхает и вполне прозрачен для видимого и ультрафиолетового света до 300 ммк. Его применение для люминесцентной микроскопии было предложено Бухман с сотрудниками [7]. Шалумович рекомендует заключать в сахарный сироп [22, доп. сп.]. [c.313]

    Для исследования функционального состояния органов животных в естественных условиях разработаны специальные методы витальной люминесцентной микроскопии с иснользованием различных опак-иллюминаторов и ультрапаков. Ультрафиолетовый или сине-фиолетовый свет, возбуждающий люминесценцию органов, падает на объект сверху, через объектив. В кровь или под кожу животному вводится раствор флуорохрома (на физиологическом растворе) и перемещение этого флуорохрома и его превращения в органе наблюдаются в люминесцентный микроскоп [49]. Этот метод был с успехом применен для изучения функциональной активности печени и почек [50—52] (см. рис. 77), для исследования нервной системы [53] и других органов. [c.315]

    В результате реакции цинкуранилацетата с солями натрия фиксируется появление желто-зеленой люминесценции выпадающих октаэдров натрийцинкуранилацетата. Реакция может выполняться либо как капельная на бумаге, либо как микрокристаллоскопическая с последующим наблюдением под люминесцентным микроскопом. Каплю исследуемого раствора объемом 0,005 мл наносят на кварцевое предметное стекло, и рядом помещают каплю раствора цинкуранилацетата. При соединении капель, спустя 1—2 мин, выпадают октаэдры, которые при рассматривании в ультрафиолетовых лучах имеют желто-зеленую люминесценцию. Слишком длительная обработка капель может привести к выпадению из раствора реактива, имеющего вид длинных светящихся игл, что затрудняет или делает невозможным обнаружение натрия. Предел обнаружения в капельном варианте 12,5 мкг при предельном разбавлении 1 4000. В некоторых случаях предел обнаружения может быть доведен до 1 мкг. В мпкрокристаллоскопическом варианте предел обнаружения 0,03 мкг при предельном разбавлении 1 330 ООО. Обнаружению натрия с помощью этой реакции мешают ионы аммония, железа-3 и некоторые другие. [c.110]

    Для люминесцентной метки белков применяют флуорохромы изоцианат и изотиоцианат флуоресцеина, некоторые производные родамина, в том числе изоцианат тетраметилродамина, хлорид диметил-нафтил-ами-но-сульфокислоты и ядерный красный прочный. Наиболее широко используется изоцианат флуоресцеина. Его растворяют в смеси диоксана с ацетоном и в таком виде соединяют с белком (обычно глобулиновой фракцией в количестве 5 мг флуорохрома на 100 мг белка) при температуре О—5° С, перемешивая в течение 18 часов. Полученный коньюгат белка с флуоресцеином освобождают от несвязавшегося красителя сначала с помощью диализа против забуференного при рН=9,0 физиологического раствора. Дальнейшая очистка от избыточного красителя производится переосаж-дением белка сульфатом аммония (4—5 раз), пока надосадочная жидкость не перестает люминесцировать. Препараты (мазки, суспензии, замороженные срезы), как фиксированные ацетоном, так и нефиксированные, приводят в соприкосновение с люминесцентно-меченым белком в течение 30 минут, промывают в физиологическом растворе (рН=7ч-7,5) и заключают в забу-ференный глицерин. Исследовать такие препараты лучше при ультрафиолетовом возбуждении. Соответствующие антигены при этом люминесцируют очень ярко светло-зеленым светом. Этот метод позволяет определять внутриклеточную локализацию чужеродных полисахаридов и белков, ферментов и гормонов, устанавливать антигенное родство тканей и клеток, быстро идентифицировать под микроскопом бактерии й вирусы. [c.317]

    При решении многих вопросов современной биологии и медицины. используют люминесцентные микроскопы. Они отличаются от обычных микроскопов тем, что в них исследуемый объект становится видимым не за счет пропущенного или отраженного им света, а благодаря возникновению его люминесценции, возбуждаемой ультрафиолетовыми или коротковолновыми видимыми лучами. Люминесцентные микроскопы снабжены источниками ультрафиолетовых лучей, которые должны про-аускаться их оптической системой. Для этого оптику микроскопов изго-говляют из кварца и флюорита. В качестве возбуждающих источников используют электрическую дугу, а также ртутные лампы высокого и сверхвысокого давления. [c.436]

    Люминесцентный микроскоп МУФ-2. Наиболее совершенным отече ственным люминесцентным (ультрафиолетовым) микроскопом является МУФ-2. Его оптическая схема изображена на рис. 201, б. Свет от лам- [c.436]

    Поглощение кристаллических веществ складывается из поглощения основного вещества и поглощения активатора. Полоса поглощения основного вещества называется основной или фундаментальной. Основное поглощение обычно лежит в ультрафиолетовой области спектра и представляет собою широкую полосу. В видимой области спектра основное вещество в большинстве случаев прозрачно. Форма полос поглощения кристаллофосфоров за редкими исключениями известна лишь качественно. Это вызвано трудностью измерений. Большинство кристаллофосфоров представляет собою мелкий порошок, сильно рассеивающий падающий на них свет обычные приёмы исследования спектров поглощения для них неприменимы, так как при прохождении света через рассеивающие слои ослабление света, идущего в прежней направлении, происходит не столько вследствие поглощения, сколько в результате рассеяния, которое действует в десятки и сотни раз сильнее, чем поглощение. Точное измерение поглощения возможно у веществ, дающих крупные кристаллы, например у щёлочногалоидных фосфоров типа МХ (М—щелочной металл, X—галоид). Примеры подобных спектров приводятся пиже (см., например, рис. 282). У мелких кристаллов с линейными размерами 10 —20 х, например у фосфоров группы сернистого цинка, исследование спектров поглощения можно производить с помощью люминесцентного микроскопа, обладающего кварцевым осветителем и кварцевым объективом и спектрографом особой конструкции в виде насадки на микроскоп. Подобное устройство осуществлено в последнее время Е. М. Брумбергом [60] и С. А. Гершгорипым. Полученные этим способом спектры фосфоров группы сернистого цинка приводятся ниже, на рис. 207а. Однако число веществ, изученных этим путём, ещё незначительно. В большинстве случаев величина поглощения определяется качественно или по спектрам отражения, или косвенно, по яркости возникающего излучения [158, 370]. [c.295]

    В люминесцентном микроскопе к оптике предъявляются те же требования, которые были описаны выше в случае обычного исследовательского микроскопа. Различия в эксплуатации и конструкции относятся к генерированию и передаче света с длинами волн, пригодными для возбуждения флуоресцирующих красителей (флуо-рохромов) или естественной флуоресцендии в объекте, а также к детектированию света для тех длин волн, которые возникли в объекте в результате флуоресценции. Поскольку для возбуждения нужны, как правило, малые длины волн в области, близкой к ультрафиолетовой, лампа (обычно ртутная дуговая лампа высокого давления), линзы конденсора и любые другие линзы на пути от лампы к объекту должны быть изготовлены из материала (обычно флюорит), хорошо пропускающего свет таких длин волн. Существенным моментом является использование зеркала с передней отражающей поверхностью (без стеклянного слоя). Иммерсионное масло для объектива и конденсора не должно флуоресцировать (например, специальное синтетическое масло или масло сандалового дерева). [c.29]

    Для изучения физико-химической сущности функций, процессов в физиологии растений широко применяют методы лабораторно-аналитический, вегетационный, полевой, мечеиы.к атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др. Кроме того, используют фитотроны и лаборатории искусственного климата, в которы.х выращивают растения и проводят опыты в условиях определенного состава воздуха, нужной температуры и освещения. С помощью этих методов физиологи исследуют растения на молекулярном, субклеточном, клеточном и организменном (ин-тактное растение) уровнях, [c.14]

    Цитогенетический анализ проводится под люминесцентным микроскопом в ультрафиолетовом свете. Хромосомные обмены (транслокации и дицентрики) между разноокрашенными хромосомами легко определяются как двухцветные структуры. Для идентификации транслокаций (с одной центромерой) и дицентриков (с двумя центромерами) одновременно с хромосомными [c.160]

    Под микроскопом сподумен бесцветен в толстых шлифах плео-хроичен. В катодных лучах интенсивно люминесцирует оранжевым светом [10]. В ультрафиолетовом свете люминесцирует слабее розовато-желтым или розоватым светом [17]. (Люминесцентный метод применяется при минералогическом анализе руд.) [c.185]

    Для определения глубины проникновения чаще всего пользуются индикаторным методом . Суть его заключается в том, что из образца, определенное время экспонированного в испытуемой среде, делают тонкий срез в плоскости, совпадающей с направлением диффузии, и помещают этот срез в раствор подходящего индикатора. Через некоторое время в области, в которую проник электролит, индикатор изменяет цвет (проявление) и под микроскопом измеряют ширину этой области. Для некотор1.1х систем, например, поливинилхлорид — азотная кислота, за продвижением фронта диффузии удобно наблюдать в ультрафиолетовом свете, не прибегая к применению индикаторов. Для определения в непрозрачных материалах, например, резинах или наполненных пластмассах, используют специальные люминесцентные индикаторы или А1етоды, которые условно можно назвать методами отпечатка . Суть этих методов заключается в том, что срез прижимают к пластинке с индикаторным слоем, изменяющим оптическую характеристику под влиянием электролита. В случае использования меченых атомов — это метод авторадиографии. Следует подчеркнуть, что иногда обычным индикаторным методом пе удается обнаружить проникновение электролита в полимер, например соляной кислоты в полиэтилен НП. Это связано с тем, что нри проявлении электролит диффундирует из полимера быстрее, чем индикатор диффундирует в полимер. С помощью метода отпечатков диффузия хлористого водорода в полиэтилен НП легко наблюдается. [c.77]

    В. Н. Ш а л у м о в и ч, ДАН СССР 105, № 3, 584 (1955). Изучение структуры н е.1точной оболочки куриного яйца при помощи люминесцентной ультрафиолетовой микроскопии и некоторыми гистохимическими методами. [c.302]

    Проводились исследования свойств качуков при помощи радиоактивных изотопов [1382—1385], ультрафиолетовых спектров поглощения [1386], электронного микроскопа [1387— 1389], люминесцентного анализа [1390—1391]. [c.668]


Смотреть страницы где упоминается термин Ультрафиолетовый люминесцентный микроскоп: [c.492]    [c.22]    [c.236]    [c.275]    [c.311]    [c.192]    [c.324]   
Фотолюминесценция жидких и твердых веществ (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия

Микроскопия люминесцентная



© 2025 chem21.info Реклама на сайте