Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные потенциалы, зависимость от концентрации раствора

    Зависимость электродного потенциала от концентрации раствора [c.544]

    Открытие зависимости величины электродного потенциала от концентрации соответствующих ионов в растворе окончательно поколебало позиции контактной теории. [c.219]

    Зависимость электродного потенциала от концентрации окисленной и восстановленной форм вещества в растворе выражается формулой В. Нернста  [c.184]


    Следовательно, в частном случае, при 18°, зависимость электродного потенциала от концентрации определяющих потенциал ионов в растворе выразится уравнением  [c.116]

    Осмотическая теория Нернста не в состоянии раскрыть физической сущности процессов, приводящих к появлению скачка потенциала на границе металл, — раствор, так как она основана на представлениях Аррениуса об электролитической диссоциации. Главный недостаток теории Аррениуса заключается в отожествлении свойств растворов электролитов со свойствами идеальных газовых систем, т. е. в игнорировании взаимодействия ионов между собой и с молекулами растворителя. Тот же недостаток присущ и теории Нернста. Развитие теории электродного потенциала повторяло ход развития теории растворов электролитов. Недостатки этой теории, так же как и ее успехи, отражались и в теории электродных потенциалов. Так, введение понятий о коэ( ициенте активности (как величине, отражающей межионное взаимодействие) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста правильную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Менделеев, и, в особенности, учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков), были важными вехами в развитии теории растворов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродом и раствором. [c.219]

    Потенциометрия, подобно кондуктометрии, является электрохимическим методом анализа, широко используемым при проведении научных исследований и при производственном контроле различных технологических процессов. Она основана на зависимости электродного потенциала от состава раствора. В отличие от рассмотренного ранее кондуктометрического метода контроля в потенциометрическом методе измеряют специфическое свойство раствора — активность определенного сорта ионов. Однако необходимо иметь в виду, что активность данных ионов определяется не только их концентрацией, но зависит также от ионной силы раствора, т. е. от его общего состава. В этом Смысле активность, как и электропроводность, является его интегральным свойством. [c.205]


    Составить таблицу электродных потенциалов алюминия в растворах с активными концентрациями А1 + 1 0,1 0,01 0,0001 0,00001 моль/л и начертить кривую зависимости электродного потенциала от концентрации ионов. [c.93]

    Покажем, как определить зависимость величины электродного потенциала Е от концентрации ионов в растворе, на примере цинкового электрода в растворе, в котором активность ионов цинка равна а+. Так как электродные потенциалы мол<но рассматривать как частный случай э. д. с. гальванических цепей, то к ним при- менимы соотношения, выведенные в 174 для э. д. с. [c.425]

    Электродный потенциал каждого металла зависит не только от его природы, но и от концентрации ионов данного металла в растворе, с которым соприкасается данный электрод. Зависимость электродного потенциала металла от концентрации его иоиов в растворе, соприкасающемся с электродом, выражается уравнением Периста  [c.206]

    Таким образом, равновесный электродный потенциал зависит от свойств ионов, определяющих его, и от их концентрации в растворе. Зависимость потенциала электрода от концентрации потенциалопределяющих ионов в растворе электролита предложена В. Нернстом  [c.33]

    Потенциометрический метод анализа основан на измерении электродного потенциала и нахождении зависимости между его величиной н концентрацией, точнее, активностью потенциалопределяющего компонента в растворе. [c.102]

    Разность потенциалов, установившаяся между электродом и раствором при образовании двойного электрического слоя, называется электродным потенциалом ф. Он характеризует равновесное состояние системы электрод — раствор, и поэтому является ее термодинамическим свойством. Электродный потенциал зависит от материала электрода, природы окружающей его среды (раствора), температуры и концентрации ионов, которыми электрод обменивается с раствором. Эта зависимость выражается уравнением Нернста [c.235]

    Если пластинку из металла погруз ть в раствор его соли, то на границе раздела фаз возникает двойной электрический слой. Образовавшаяся пограничная разность потенциалов получила название электродного потенциала. Математическая зависимость между величиной скачка потенциала на границе соприкосновения металла и раствора и концентрацией (точнее, активностью) ионов этого металла в растворе выражается следующим уравнением  [c.120]

    Потенциометрическое титро-вание основано на линейной зависимости электродного потенциала от логарифма концентрации ионов или логарифма отношения окислителя к восстановителю в титруемой системе. Если применяемый при титровании электрод обратим по отношению к ионам титруемого или титрующего вещества, то изменение потенциала такого электрода будет Е указывать на изменение концентрации ионов в растворе. [c.319]

    Рассматривая катодные процессы, протекающие при электролизе водных растворов, ограничимся важнейшим случаем — катодным восстановлением, приводящим к вьщелению элементов в свободном состоянии. Здесь нужно учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит от концентрации ионов водорода и в случае нейтральных растворов (рН=7) имеет значение — -0,059 7 = -0,41 В. Поэтому, если катионом электролита является металл, электродный потенциал которого значительно поло-жительнее, чем —0,41 В, то из нейтрального раствора такого электролита на катоде будет выделяться металл. Такие металлы находятся в ряду стандартных окислительно-восстановительных потенциалов вблизи водорода (начиная приблизительно от олова) и после него. Наоборот, если катионом электролита является металл, имеющий потенциал значительно более отрицательный, чем —0,41 В, металл восстанавливаться не будет, а произойдет выделение водорода. К таким металлам относятся металлы начала ряда — приблизительно до титана. Наконец, если потенциал металла близок к значению -0,41 В (металлы средней части ряда — 7п, Сг, Ре, Сс1. N1), то в зависимости от концентрации [c.282]

    Для истолкования кинетических закономерностей электродных реакций необходимо знание зависимости 5о-потенциала от потенциала электрода и концентрации раствора. Теория Грэма позволяет провести такой расчет для растворов любого состава. Для 1,1-валентных электролитов используется уравнение [c.117]

    Из (65.15) следует, что для определения координационного числа комплекса, непосредственно участвующего в электродном процессе, необходимо найти зависимости тока обмена и равновесного потенциала от концентрации свободного лиганда. При достаточно большом избытке лиганда в растворе, когда ионы металла присутствуют лишь в виде [c.336]

    Потенциометрическое титрование основано на скачкообразном изменении вблизи эквивалентной точки концентрации титруемого вещества при добавлении к нему небольшого количества титранта. В основе этого титрования лежит линейная зависимость электродного потенциала от логарифма активности ионов или логарифма отношения активности ионов окислителя к активности ионов восстановителя в титруемой системе. Если применяемый при титровании электрод обратим по отношению к ионам титруемого или титрующего вещества, то изменение потенциала такого электрода будет указывать на изменение концентрации ионов в растворе. Зависимость потенциала обратимого электрода от активности ионов выражается уравнением (XIV. 17). Всякому резкому изменению концентрации или активности ионов при титровании отвечает скачкообразное изменение потенциала электрода, обратимого по отношению к ионам титруемого вещества или титранта. Зависимость потенциала от количества прилитого титранта выражают графически (рис. 134). Полученная кривая называется потенциометрической кривой. Точка эквивалентности соответствует точке перегиба кривой. [c.313]


    Потенциометрия. Потенциометр ней называется физико-химический состав исследования и электрохимический метод инструментального анализа, основанный на зависимости электродного потенциала или ЭДС элемента от состава раствора. Потенциометрия применяется для определения термодинамических характеристик реакций, стандартных электродных потенциалов, активности и коэффициентов активности электролитов, водородного показателя, концентраций растворов (потенциометрическое титрование) и т. д. [c.296]

    Рассматривая катодные процессы, протекающие при электро-лизе водных растворов, нужно прежде всего учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит, как указывалось выше, от концентрации ионов водорода (см. стр. 119) в нейтральных растворах (pH = = 7) ф = —0,059-7 = —0,41 В. Отсюда ясно, что если электролит образован металлом, электродный потенциал которого значительно положительнее, чем —0,41 В, то из нейтрального раствора у катода будет выделяться металл. Такие металлы находятся в ряду стандартных потенциалов вблизи водорода (начиная приблизительно от олова) и после него. В случае электролитов, металл которых имеет потенциал значительно более отрицательный, чем —0,41 В, на катоде будет выделяться водород. К таким металлам относятся металлы начала ряда стандартных потенциалов — приблизительно до титана. Наконец, если потенциал металла близок к величине —0,41 В (металлы средней части ряда — 2п, Сг, Ре, d, N1), то, в зависимости ог концентрации раствора, температуры и плотности тока, возможно как восстановление металла, так и выделение водорода нередко наблюдается совместное выделение металла и водорода. [c.124]

    Ранее уже упоминалось, что значение электродных потенциалов зависит не только от металла, но и от среды, его окружающей. Зависимость величины электродного потенциала металла от концентрации собственных ионов в растворе отражает формула Нернста [c.156]

    Это уравнение выражает зависимость потенциала металла от концентрации его ионов в растворе и называется уравнением электродного потенциала, известным под названием уравнения Нернста. [c.60]

    Как показывает рассмотренный пример, при электролизе водных растворов солей, реакция которых близка к нейтральной, па катоде восстанавлнваются те металлы, электродные потенциалы которых значительно положительнее, чем —0,41 В. Если потенциал металла значительно отрицательнее, чем —0,41 В, то на катоде будет выделяться водород . При значениях электродного потенциала металла, близких к —0,41 В, возможно, в зависимости от концентрации соли металла и условий электролиза, как восстановление металла, так и выделение водорода (или совместное протекание обоих процессов). [c.190]

    Нернст полагал, что электродный потенциал металла возникает в результате обмена ионами между металлом и раствором, но в качестве движущих сил этого обмена ионами Нернстом были приняты электролитическая упругость растворения металла Р и осмотическое давление растворенного вещества я. На этой основе им была создана качественная картина возникновения скачка потенциала на границе металл—раствор и количественная зависимость величины скачка этого потенциала для металлических электродов первого рода от концентрации раствора. Из теории Нернста, в частности, следовал вывод о независимости стан-дартньга ( нормальных ) потенциалов электродов от природы растворителя, поскольку величина электролитической упругости растворения Р, определяющая нормальный (или стандартный) потенциал металла, не являлась функцией свойств растворителя, а зависела только от свойств металла. [c.216]

    Потенциометрия как электрохимический метод исследования и анализа заключается в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалопределяюшего компонента в растворе. Используя эту зависимость, можно установить не только активность ионов, но и ряд характеристик изучаемых равновесных химических, биологических и других систем. С другой стороны, проследив во время химической реакции за изменением электродного потенциала, можно судить об изменении концентрации реагирующих веществ в растворе. Таким приемом, например, пользуются в производстве при непрерывном технологическом контроле химических процессов и при количественном определении веществ. В последнем случае имеется в виду широко используемый в аналитической химии метод потенциометрической индикации конечной точки титрования (к.т.т.). [c.19]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    На величину электродного потенциала значительное влияние может оказывать отклонение от стандартных условий, изменение концентрации катионов, одноименных с металлом электрода. Зависимость значения электродного гютенциала от температуры и концентрации одноименных ионов металла в растворе выражается уравнением Нернста [c.156]

    Зависимость электродного потенциала метапла от температуры и концентрации его ионов в растворе выражается уравнением Нернста y=Y +(0,059/Il) lg , [c.56]

    До сих пор в расчетах использовались стандартные электродные потенциалы. В то же время на величину электродного потенциала существенно влияют температура и концентрация раствора. Эта зависимость выражается уравнением Нврнста. Применяя соотношения (VUI. 43) и (VIII. 44) и приняв во внимание (VIII. 17), запишем  [c.290]


Смотреть страницы где упоминается термин Электродные потенциалы, зависимость от концентрации раствора: [c.103]    [c.73]    [c.216]    [c.544]    [c.206]    [c.53]    [c.212]    [c.213]   
Основы общей химии Т 1 (1965) -- [ c.209 ]

Основы общей химии том №1 (1965) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрация растворов

Потенциал раствора

Потенциал электродный потенциал

Потенциалы концентрации раствор

Электродный потенциал



© 2025 chem21.info Реклама на сайте