Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мыла щелочные

    Выбор эмульгатора можно производить основываясь на его гидрофильно-липофильном балансе (ГЛБ). Молекулы ПАВ, для которых = 10- 18, имеют сильные гидрофильные свойства и стабилизируют прямые эмульсии (мыла щелочных металлов, алкилсульфаты, алкилсульфонаты и т. д.). Если Л/глб = 3 8, то у молекул ПАВ преобладают гидрофобные свойства (мыла щелочноземельных и поливалентных металлов). Такие ПАВ используют для получения эмульсий обратного типа. [c.456]


    ПАВ, уменьшая поверхностную энергию дисперсной системы, как бы защищают ее от возможного нарушения устойчивости. Поэтому повышение устойчивости дисперсных систем под влиянием ПАВ называют коллоидной защитой или стабилизацией коллоидов. В качестве стабилизирующих веществ для золей обычно, используют высокомолекулярные ПАВ, желатин, альбумин, казеин, крахмал, пектин, каучуки, мыла поливалентных металлов, гемоглобин, мыла щелочных металлов и т. д. [c.282]

    Мыла щелочных металлов (например, олеат натрия) в очень разбавленных водных растворах состоят из отдельных молекул, частично диссоциированных на ионы. Однако уже при концентрации раствора порядка 1% в таких растворах появляются агрегаты молекул, образующих мицеллы В главе IV мы ознакомились со строением мицелл некоторых гидрозолей минеральных веществ. Мицел ты в растворах мыл имеют несколько иное строение (рис. 57). [c.157]

    Помимо обычных мыл — щелочных солей средних и высших жирных кислот — к коллоидным ПАВ относится большое число веществ (синтетических и природных), близких к ним по строению молекул и проявляющих сходные физикохимические и технологические свойства. [c.9]

    До настоящего времени не выяснена специфичность действия эмульгатора почему одни эмульгаторы лучше стабилизируют эмульсии М/В, а другие — В/М. Для объяснения избирательного действия эмульгаторов было предложено несколько качественных теорий, но ни одна из них не может считаться вполне удовлетворительной. Поэтому на практике руководствуются эмпирическими закономерностями. Например, установлено, что в отличие от мыл щелочных металлов мыла магния, стронция, железа, алюминия и других поливалентных металлов стабилизируют главным образом эмульсии В/М. Интересными свойствами обладают природные эмульгаторы лецитин и холестерин R OO —СНа [c.183]

    Как уже указывалось в главе VI, стабилизация дисперсной системь с помощью структурированных механически прочных оболочек универсальна и придает дисперсной системе практически безграничную устойчивость. Тип образующейся концентрированной эмульсии зависит главным образом от природы эмульгатора. Выбор эмульгатора определяется следующим правилом эмульсии первого типа м/в) стабилизуются растворимыми в воде высокомолекулярными соединениями, например белками или воднорастворимыми гидрофильными мылами (оле-атом натрия и вообще мылами щелочных металлов). Эмульсии второго типа в/м) стабилизуются высокомолекулярными соединениями, растворимыми в углеводородах, например полиизобутиленом, олеофильными смолами и мылами с поливалентными катионами (олеатом кальция и др.), не растворимыми в воде, но растворимыми в углеводородах. Следовательно, эмульгатор должен иметь большее сродство с той жидкостью, которая является дисперсионной средой. Воднорастворимые мыла и воднорастворимые высокополимеры стабилизуют эмульсин масла в воде, в которых вода — дисперсионная среда. Каучук и другие высокополимеры, растворимые в углеводородах, стабилизуют эмульсии, в которых дисперсионная среда — масло (углеводородная жидкость). [c.143]


    Получение мыл щелочных и щелочноземельных металлов не представляет больших трудностей, получаются при этом средние соли. В случае поливалентных металлов (алюминий, свинец и др.) получаются преимущественно смеси средних и основных мыл. Для предотвращения гидролиза реакцию омыления целесообразно проводить в неводных средах. С целью получения натриевых и литиевых мыл (стеаратов металла) исходную кислоту нейтрализуют снир- вода товым (водньсм) раствором щелочи в лабо-раторном приборе (рис. 91). Теоретически необходимое количество щелочи рассчитывают по уравнению  [c.257]

    Посмотрим, как построены адсорбционные слои, защищающие эмульсии первого и второго типа. В эмульсиях типа масло в воде молекулы мыла щелочного металла располагаются так, что их полярные части обращены в дисперсионную среду, которой является полярная жидкость — вода (рис. 53). [c.143]

    Эмульсию одного типа можно превратить в эмульсию другого типа. Это явление называется обращением фаз в эмульсиях. Для того чтобы вызвать такое обращение, надо изменить природу эмульгатора. Например, эмульсию бензола в воде, стабилизованную растворимым в воде мылом щелочного металла, легко превратить в эмульсию воды в бензоле. Для этого надо добавить раствор какой-нибудь соли с двух- или трехвалентным катионом, например хлористого кальция. Хлористый кальций реагирует с олеатом натрия, и образуется нерастворимый в воде олеат кальция, который растворяется в бензоле и стабилизует эмульсию воды в бензоле. [c.146]

    Отличительной особенностью мицеллярных растворов ПАВ является их солюбилизирующая способность, т. е. способность растворять вещества, которые в чистом растворителе нерастворимы. Например, водный мицеллярный раствор ПАВ растворяет углеводороды, углеводородные мицеллярные растворы ПАВ становятся растворителями воды. Достаточно эффективное ПАВ делает несмешивающиеся жидкости неограниченно растворимыми. Разумеется, это не истинные, а коллоидные растворы. Солюбилизация происходит в результате проникновения молекул слабо растворимого вещества внутрь мицелл. Именно там оно накапливается в больших количествах, обеспечивая растворимость нерастворимого вещества. Мицеллы ПАВ при этом увеличиваются в размере. Типичным представителем водорастворимых мицеллообразующих ПАВ являются мыла щелочных металлов. [c.585]

    Водные растворы мыл щелочных металлов обладают еще одним очень интересным свойством. Как известно, углеводороды в воде практически не растворимы. Однако, если в воде растворено небольшое количество мыла, то углеводород (например, бензол, гексан) растворится в воде. Количество перешедшего в раствор углеводорода будет зависеть только от концентрации [c.159]

    Мыла щелочных металлов, красители [c.165]

    Тип эмульсии определяется добавленным стабилизатором если к смеси равных объемов воды и бензола добавить гидрофильный эмульгатор, то образуется эмульсия типа м/в добавление гидрофобного эмульгатора приводит к возникновению эмульсии типа в/м. Применение соответствующих эмульгаторов позволяет получать эмульсии, в которых объем фазы гораздо больше объема дисперсионной среды. Так, Ньюмен получил эмульсию из 99 частей бензола в 1 части воды, причем стабилизатором было мыло щелочного металла Кремнев приготовил аналогичную эмульсию из 150 частей бензола в 1 части воды и т. д. [c.166]

    Мыла. Мыла представляют собой соли высокомолекулярных жирных кислот. Мыла щелочных металлов хорошо растворимы в воде и при концентрации меньше 1% образуют молекулярные растворы, в которых молекулы мыла частично диссоциируют па [c.170]

    Мыла представляют собой соли высокомолекулярных жирных кислот. Мыла щелочных металлов хорошо растворимы в воде и при концентрации меньше 1 % образуют молекулярные растворы, [c.194]

    Этот процесс, получивший название обращение фаз, приводит к тому, что дисперсная фаза данной эмульсии становится дисперсионной средой вновь образованной системы, а дисперсионная среда данной эмульсии — дисперсной фазой вновь образованной эмульсии. Осуществляется это введением поверхностно-активного вещества, которое стабилизирует обратный тип эмульсии. Например, эмульсию типа М/В, стабилизированную олеатом натрия, переводят в эмульсию В/М введением избытка олеата кальция. Эмульсию бензола в воде, стабилизированную мылом щелочного металла, превращают в эмульсию воды в бензоле прибавлением к ней при встряхивании небольшой массы хлорида кальция. Образующаяся при этом кальциевая соль мыла, хорошо растворимая в бензоле, стабилизирует эмульсию воды в бензоле. [c.346]

    При изготовлении эмульсий важно правильно подобрать эмульгатор. Он должен быть подобен той жидкости, которая является дисперсионной средой. Так, например, эмульсии типа М/В стабилизируются растворимыми в воде мылами и ВМС (желатиной, мылами щелочных металлов и др.). [c.392]


    Жиры являются исходным сырьем в производстве Омь н м мыла. Щелочной гидролиз (омыление) жиров дает [c.723]

    Растворимость мыла. Мыла щелочных металлов хорошо растворяются в воде калиевые мыла растворяются быстрее, чем натриевые. Мыла низкомолекулярных жирных кислот растворяются легче высокомолекулярных в присутствии мыл из низкомолекулярных кислот улучшается растворимость высокомолекулярных. При одинаковом числе углеродных атомов в молекуле мыла ненасыщенных жирных кислот растворяются лучше мыл из насыщенных кислот. С повышением температуры растворимость всех мыл увеличивается. [c.43]

    Анионактивные вещества и прежде всего типичные мыла — щелочные соли жирных кислот — в жесткой воде образуют нерастворимые осадки кальциевых и магниевых мыл (R 00)2 a и (НСОО)аМ , что является большим недостатком для мыла как моющего средства. [c.156]

    Образование мицелл характерно для водных растворов моющих веществ (нанрнмер, мыл — щелочных солей выс1них жирных кислот) и некоторых органических красителей с большими [c.313]

    Природные жиры и Масла представляют собой сложные эфиры высших жирных кислот с глицерином, причем чаще всего на молекулу глицерина приходится три молекулы этерифицирующей кислоты (триглицериды). В качестве последней наиболее часто встречается ненасыщенная олеиновая кислота. Наряду с ней в животных жирах находятся пальмитиновая и стеариновая кислоты, а властительных маслах (соевом, арахисовом и др.)—дважды ненасыщенная линолевая кислота. Для производства масляных красок и лаков важное значение имеют так называемые высыхающие масла (ср. разд. Г, 1.6) (например, льняное и китайское древесные масла), которые содержат, кроме того, ненасыщенные кислоты с тремя двойными связями (линоленовую и элеостеариновую). Гидролиз триглицеридов проводят либо под давлением (действием одной только воды или в присутствии основных катализаторов), либо без давления в присутствии кислотных катализаторов, например так называемого реактива Твлтчелла ). Омыление с помощью едких щелочей применяют исключительно для получения мыл — щелочных солей жирных кислот. Получающийся при расщеплении глицерин также находит разностороннее применение (ср. разд. Г,4.1.6). [c.98]

    В этом отношении наименее прочные пленкп дают мыла щелочных металлов, легко разрушаемые нагревом образовавшейся пузырчатой массы (эмульсии). Более прочные пленки на границе вода — нефть образуются в присутствии нафтеновых солей щелочноземельных металлов или металлов третьей группы. [c.69]

    К первой группе относятся смазки, п])иготовляемые на мылах щелочных металлов (N3, 1л). Эти смазки стабильны даже при небольших [5—6% tмa .)] концентрациях загустителя. В зависимости от концентрации загустителя и природы органического радикала мыла (из насыщенных или ненасыщенных жирных кислот, растительных или животных жиров, синтетических жирных кислот) эти смазки переходят в текучее состояние при температурах от 100 до 200 °С и даже выше. После расплавления и охлаждения они вновь обретают пластичную стру> ту1)у, т. е. они как бы термически обратимы. Литиевые смазки мо])озоустойчивы. Недостатком натриевых смазок является низкая водоупорность. [c.375]

    Для объяснения рассмотренных выше фактов существует несколько моделей, позволяющих в упрощенной форме получить представления о механизме влияния эмульгаторов на тип получаемой эмульсии [14]. Так, Банкрофт (1913) выдвинул представление о бислойности пленки ПАВ, разделяющей две жидкие фазы, с различными значениями поверхностного натяжения на двух ее сторонах. Для ПАВ, хорошо взаимодействующих с водой, например для мыл щелочных металлов, значение со стороны воды снижается и пленка сворачивается в сторону большей стягивающей силы, замыкая в себе калю масла. Гаркинс (1929) предложил модель клиньев , считая, что сольватация расширяет одну из частей дифильной молекулы ПАВ, сообщая ей форму клина. Капелька возникает путем ориентации клиньев основаниями наружу, наподобие лепестков ромашки. [c.22]

    В данной статье излагаются результаты изучения возможности применения мыл щелочных металлов таллового-масла как стабилизаторов водных дисперсий высокоактивной печной сажи и описываются свойства сажемаслонаполненных каучуков, полученных с шрименением этих дисперсий. [c.182]

    Образование мицелл характерно для подных растворов моющих веществ (например, мыл — щелочных солей высших жирнь[х кислот) и некоторых органических красителей с большими молекулами. В других средах, например в этиловом спирте, эти вещества растворяются с образованием молекулярных растворов. [c.295]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и Бысокомолеку.ляр-ных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стпруктурно-механически.и фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурномеханической стабилизации дисперсий н водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.311]

    Так, Банкрофт (1913 г.) выдвииул представление о бпслойности пленки ПАВ, разделяющей две жидкие фазы, с различными значениями а па двух ее сторонах. Для ПАВ, хорошо взаимодействующих с водой, наирнмер, для мыл щелочных металлов, значение а со стороны воды снижается (см. раздел V. 3) и пленка сворачивается в сторону большей стягивающей силы, замыкая в себе капельку масла. Гаркинс (1929 г.) предложил модель клиньев , считая, что сольватация расширяет одну из частей дифильной молекулы ПАВ, сообщая ей форму клипа. Естественно, что капелька возипкает путем ориентации клиньев основаниями наружу, наподобие лепестков ромашки. [c.282]

    Эмульсии при определенных условиях обнаруживают характерное явление, получившее название обращения фаз. Если в эмульсию данного типа при интенсивнол перемешивании вводить избыток поверхностно-активного вещества, являющегося стабилизатором эмульсии обратного типа, то первоначальная эмульсия может об- ращаться, т. е. дисперсная фаза в ней становится дисперсионной средой, а дисперсионная среда— дисперсной фазой. Например, эмульсия типа М/В в присутствии стабилизатора олеата натрия может быть переведена в эмульсию типа В/М введением избытка олеата кальция. Эмульсию бензола в воде, стабилизированную мылом щелочного металла, можно превратить в эмульсию воды в бензоле прибавлением к ней при встряхивании небольшого количества хлористого кальция. Образующаяся при этом кальциевая соль мыла, хорошо растворимая в бензоле, стабилизирует эмульсию поды в бензоле. [c.393]

    Для того чтобы происходила адсорбция органического иона, он должен хорошо адсорбироваться дисперсной фазой, т. е. иметь достаточно длинную углеводородную цепь. Поэтому эмульсии типа м/в могут быть стабилизованы только сравнительно высокомолекулярными мылами (щелочными солями лауриновой и более высокомолекулярных жирных кислот). Отсутствие эмульгирующей [c.373]

    Седиментационную устойчивость бцтумных растворов особенно при повышенных температурах и развитие структурно-механических свойств мо но обеспечить введением реагентов-стабилизаторов и активных наполнителей. Стабилизаторами являются мыла щелочных, щелочноземельных и тяжелых тиеталлов, нафтенаты и сульфо-нафтенаты, катионоактивные ПАВ, неионогенные эфиры жирных кислот, фосфолипиды и ряд других веществ. Функциями их явля- [c.378]

    Для стабилизации обратных Э. используют мыла пмеход-ных металлов, моноалканоламиды, неионогенные ПАВ с низким ППБ, напр, спан-80, этилаюксилаты высших спиртов и к-т. При взаимод. стабилизированных мылами щелочных металлов прямых Э. с многозарядными ионами может происходить т. наз. обращение фаз - самопроизвольное превращение прямой Э. в обратную при использовании неионогенных эмульгаторов обращение фаз может происходить с ростом т-ры. [c.479]

    Для стойкости Эмульсии оказывается весьма важным смачиваемость Эмульгатора той и другой фазой. Эмульсия будет стойкой, если эмульгатор легко смачивается дисперсионной средой и не смачивается дисперсной фазой. Наоборот, эмульсия будет нестойкой при эмульгаторе, легке смачивающимся фазой и не смачивающимся средой. Например мыла щелочных металлов хорошо эмульгируют масло в воде и не эмульгируют воду в масле, так как они легко смачиваются водой и плохо маслом. У мыл щелочноземельных металлов обратное отношение к смачиваемости, в силу чего они способны эмульгировать воду в масле. [c.47]

    Феноляты щелочно-земельных металлов. . Мыла щелочно-земельных металлов. ... Соли щелачно-земельных металлов гидро- [c.321]

    Наиболее широко применяемыми и давно известными детергентами являются мыла — щелочные соли высших жирных кислот (содержащих от 10 до 22 углеродных атомов в цепи). В обычном мыле главные составные части — это олеат, пальмитат и стеарат натрия. В последнее время широко используют многие синтетические детергенты алкилсульфонаты, алкиларилсульфонаты, некали, хлориды алкиламмо-ния, полигликоэфиры и пр. Молекулы детергентов имеют явно выраженную полярную часть (обозначаемую на рисунке кружком) и неполярную часть (обозначаемую черточкой). [c.142]


Смотреть страницы где упоминается термин Мыла щелочные: [c.336]    [c.223]    [c.737]    [c.47]    [c.110]    [c.373]    [c.282]    [c.325]    [c.190]    [c.479]    [c.157]    [c.98]    [c.194]   
Эмульсии, их теория и технические применения (1950) -- [ c.377 ]




ПОИСК







© 2025 chem21.info Реклама на сайте