Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты массоотдачи насадочных

    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]


    Пример 6-12. Определить коэффициент массоотдачи для газовой фазы в насадочном абсорбере, в котором производится поглощение двуокиси серы из инертного газа (азота) под атмосферным давлением. Температура в абсорбере 20 С, он работает в пленочном режиме. Скорость газа в абсорбере (фиктивная) 0,35 м/с. Абсорбер заполнен кусками кокса (а = 42 м м, = 0,58 м /м ). [c.287]

    Определение коэффициента массоотдачи в газовой (паровой) фазе для насадочных колонн возможно по критериальной зависимости, выведенной на основе обобщения значительного количества экспериментальных данных, полученных для орошаемых насадок [c.345]

    Для тарельчатых абсорберов (рис. 5.23) необходимое число реальных тарелок находят через число теоретических тарелок и по значению КПД реальной тарелки (5.60) или методом кинетической кривой (см. рис. 5.17). Существенно, что при расчетах размеров абсорбционных аппаратов используются экспериментальные данные об интенсивности (кинетике) межфазного переноса целевого компонента в форме зависимости коэффициентов массоотдачи ([3 и Ру), или высоты единиц переноса ) для насадочных абсорберов, или КПД (эффективности) реальных тарелок (г ) от многочисленных параметров, влияющих на скорость массопереноса при конкретных параметрах процессов абсорбции. [c.393]

    Коэффициент массоотдачи в жидкой фазе для насадочных колонн может быть определен по уравнению [c.345]

    Формулы для определения коэффициентов массоотдачи для отдельных систем газ — жидкость. Процесс абсорбции двуокиси серы водой в насадочных колоннах описывается уравнениями [c.271]

    Объемные коэффициенты массоотдачи и массопередачи. Поверхность контакта фаз, к единице которой отнесены коэффициенты массоотдачи и массопередачи, в большинстве случаев трудно определить. Как будет показано ниже, в барботажных массообменных аппаратах эта поверхность представляет собой совокупность поверхностей брызг, пены и пузырей в насадочных аппаратах — некоторую активную часть геометрической поверхности насадки, смачиваемую жидкостью. Поэтому коэффициенты массоотдачи и массопередачи часто относят не к поверхности контакта фаз Р, к рабочему объему аппарата V, который связан с поверхностью зависимостью [c.409]

    Коэффициенты массоотдачи Рд в дисперсной фазе в первом приближении можно определять для насадочных и ситчатых экстракторов, применяя расчетные зависимости для единичных капель. Например, в случае сферических капель размером менее можно пользоваться уравнением [c.549]


    Это наблюдается, в частности, когда истинная поверхность контакта фаз неизвестна и коэффициенты массоотдачи относят к некоторой условной поверхности (например, в насадочных абсорберах к геометрической поверхности насадки,в барботажных абсорберах к площади тарелки). Если можно выделить влияние второй фазы на величину истинной поверхности контакта, то коэффициент массоотдачи становится не зависящим от гидродинамики и свойств этой фазы. Таким образом, влияние второй фазы оказывается косвенным. [c.123]

    Метод исследования массоотдачи при возгонке нафталина с поверхности сухой и орошаемой насадки [133, 134]. Насадочные тела изготавливают из нафталина (или покрывают им) и определяют коэффициент массоотдачи при возгонке нафталина в воздух без подачи орошения (стр. 455). При этом в массообмене участвует вся геометрическая поверхность насадки а и соответствующий объемный коэффициент массоотдачи (Рр )о=Р а (Рр—коэффициент массоотдачи, отнесенный к единице поверхности). Затем повторяют опыт при подаче орошения так как возгонка нафталина происходит только с несмоченной поверхности, то объемный коэффициент массоотдачи Рр =Рр (а—а, ). Зная из опытов (Рр )о и можно найти по соотношению  [c.439]

    Метод исследования массоотдачи при абсорбции в насадочной и шариковой колоннах [140, 1411. Находят объемный коэффициент массоотдачи из опытов в насадочной колонне и поверхностный коэффициент массоотдачи из опытов по абсорбции того же газа той же жидкостью в шариковой колонне (стр. 165), причем диаметр шариков берут равным номинальному размеру насадки. При условии полной смоченности поверхности шариков и активности всей этой поверхности удельная активная поверхность в насадочной колонне [c.440]

    Высоту насадочного слоя в нижней зоне определяют путем совместного решения уравнений (1У,29)—(IV 35). Поскольку но высоте абсорбера значения параметров изменяются м,ало, для расчета используют их среднеарифметические величины. В случае применения затопленной насадки расчет г ведут, как указано на стр. 79. Эмпирическая Зависимость коэффициента массоотдачи Рж А от скорости газа в условиях барботажа приведена иа рис. И-И. [c.156]

    Для массоотдачи в газовой фазе при ее турбулентном движении в насадочных слоях на сегодняшний день не существует надежных моделей. Обобщение большого числа экспериментальных данных по бинарным системам показывает, что в этом случае рд зависит от, а критериальное выражение для вычисления коэффициента массоотдачи обычно записывают в следующем известном виде  [c.149]

    При выборе рабочей скорости газа заметно ниже скорости захлебывания, во-первых, увеличится поперечное сечение аппарата согласно уравнению (11.2) и, во-вторых, снизится эффективность массопередачи за счет уменьшения коэффициента массоотдачи в газовой фазе, зависящего от скорости движения газового потока относительно жидкостных пленок на элементах насадки. Поэтому рабочую скорость газа в насадочных абсорберах рекомендуется принимать достаточно близкой к скорости захлебывания  [c.931]

    В математическом отношении описание процесса включает и так называемые жесткие системы, когда скорости химических реакций различаются до 10 ° раз. Разработанный алгоритм следует использовать для расчета хемосорбционных процессов в массообменных аппаратах пленочного и насадочного типов с произвольным характером течения пленки, в которых концентрация компонентов претерпевают по высоте аппарата столь значительные изменения, что скорости быстрых реакций могут стать сравнимыми со скоростями реакций медленных. Решение учитывает функции От (у) и Шх(у), определяемые характером течения. Результаты рекомендуется использовать и при соизмеримости фазовых сопротивлений, причем для описания массопередачи в газовой фазе используется коэффициент массоотдачи, который принят независимым от продольной координаты. [c.88]

    Характерная особенность процесса заключается также в повышенной вязкости растворителя по сравнению с вязкостью воды, значения Рг могут достигать 10 . Значения физического коэффициента массоотдачи р-л,-уменьшаются (для насадочных колонн примерно втрое). Кроме того, при использовании органического растворителя значительно возрастает величина Лр, т. е. уменьшается величина константы фазового равновесия гпо. [c.194]

    Из анализа имеющихся теоретических и экспериментальных данных может быть сделана оценка величин показателей степени р и q, исходя из зависимости частных высот единиц переноса от диффузионного критерия Прандтля в виде hy = С Рг ш = Prl или по непосредственным данным о влиянии коэффициентов молекулярной диффузии на коэффициент массоотдачи. Тогда, определив опытным путем значения общих высот единиц переноса h iy и h oy для двух рассматриваемых разбавленных растворов, нетрудно вычислить hx и h x и определить, какой фазой лимитируется процесс массопередачи. При этом для используемых растворов должны быть заранее определены т и т". Целесообразно выбирать такие пары растворов, которые имеют заметное различие в тангенсах угла наклона равновесной линии. Это позволит с большей точностью находить частные высоты единиц переноса. Подобный метод разложения коэффициентов массопередачи может быть применен как для насадочных, так и для тарельчатых колони [65, 66, с. 76]. [c.96]


    Кинетика процессов абсорбции рассматривалась ранее в виде общей теории массообменных процессов. Для насадочных абсорберов (рис. 5.22) с непрерывным контактом фаз величины необходимой поверхности массопередачи или общее число единиц переноса для процессов абсорбции определяются по уравнениям (5.42) и (5.49) средняя по массообменной поверхности движущая сила процесса при линейной равновесной зависимости вычисляется по уравнению (5.52) коэффициент массопередачи находят через величины коэффициентов массоотдачи в газовой и в жидкой фазах, согласно формуле (5.36) и т. п. [c.393]

    Коэффициенты массоотдачи в фазах для насадочных колонн [c.468]

    Критериальные формулы для расчета коэффициентов массоотдачи в насадочных абсорберах с неупорядоченной насадкой (навалом) при пленочном режиме, [c.270]

    Рассчитать коэффициент массоотдачи для жидкой фазы в насадочном абсорбере, в котором производится поглощение двуокиси углерода водой ири температуре 20 °С. Плотность орошения 60 мЗ/(м2-ч). Насадка — керамические кольца 35 X 35 X 4 мм навалом. Коэффициент смоченности насадки г]) = 0,86. [c.295]

    Предсказываемая соотношением (20.150) линейная зависимость между величинами в . и (D abY при заданных гидродинамических условиях подтверждается многочисленными экспериментальными данными о массопередаче, лимитируемой сопротивлением жидкой фазы, в самых разнообразных системах жидкость — газ, встречающихся в химической технологии. Сюда относятся, например, колонны с орошаемыми стенками небольшой высоты, насадочные колонны, некоторые типы барботажных слоев (см. пример 16-5). Необходимо подчеркнуть, что линейная зависимость коэффициента массоотдачи от корня квадратного из коэффициента молекулярной диффузии теоретически справедлива лишь для систем, в которых профиль скоростей внутри жидкой фазы можно считать приблизительно плоским во всех точках области, где происходит диффузия. В случае существенно неоднородных профилей зависимость в ., ок от D ab становится иной (см. задачу 16-10 о растворении твердой стенки в ламинарной стекающей пленке). [c.607]

    Пример УП-З. в противоточном насадочном абсорбере из воздуха чистой водой извлекаются нежелательные примеси. Их парциальные давления на входе = 0,001 ат, на выходе = = 0,0002 ат. Для заданного размера насадки известны коэффициенты массоотдачи = [c.182]

    Влияние химической реакции в жидкой фазе на коэффициент массопередачи в насадочной колонне описывают Данквертс и Кеннеди. Они проверяют применимость теории проницания (либо в виде предположения Хигби о времени контакта жидкости, либо в виде допущения Данквертса об обновлении поверхности). Авторы измеряли скорость абсорбции СОг раствором NaOH в насадочной колонне диаметром 100 Мм. с фарфоровыми кольцами Рашиг 1 12X12 мм. Определялись также коэффициенты массоотдачи без реакции k a в нереагирующем растворе, физические свойства которого бЫли аналогичны свойствам раствора NaOH. [c.423]

    Возможно использование моделей, описанных в главе IV, в которых каждый элемент поверхности жидкости экспонируется газу до замены его жидкостью из основной массы в течение одинакового промежутка времени 0. В таких установках точно моделируется механизм абсорбции, постулируемый моделью Хигби. При этом, еслн коэффициент массоотдачи в жидкой фазе для газа с коэффициентом диффузии О А равен то продолжительность экспозиции в модели должна быть 40А1(пк1). Колонны с орошаемой стенкой, обеспечивающие продолжительность контакта порядка 0,5 сек, подходят для моделирования насадочных колонн, а ламинарные струи с контактом, равным нескольким тысячным секунды, — для моделирования барботажных тарелок. [c.176]

    Т и б и л о в С. Г., Р а м м В. М., Б а р а н о в а А. Р1., Техн. и эконом, информ. НИУИФ им. Я. В. Самойлова, Л 1—2, 81, 89, 93 (1966). Исследование абсорбции хорошо растворимых газов в дисковой колонне. Исследование влияния концентрации олеума на абсорбцию серного ангидрида в дисковой колонне. Влияние коэффициента диффузии на коэффициент массоотдачи в газовой фазе в насадочной колонне. [c.276]

    Пример 6. Определить коэффициенты массоотдачи, общую высоту единицы переноса и коэффи1,иент массопередачи для процесса абсорбции в насадочной К0л(1нне, рассмотренного в Примерах 3 и 5. [c.52]

    Для расчета коэффициента массоотдачи в газовой фазе в насадочных колоннах можно использовать метод Морриса и Джексона. При этом коэффициент массоотдачи для колонны с насадкой находят путем умножения коэффициента массоотдачи для лабораторной колонны с орошаемой стенкой, определяемого по уравнению (VIII. 53а), на множитель R , характерный для каждого типа насадки (см. табл. IX-1). В этом случае значения скоростей, входящих в уравнение (VIII.53а) для насадки, имеют следующий смысл  [c.268]

    Указанный выше метод Морриса и Джексона можно исйоль-аовать также для определения коэффициента массоотдачи в жидкой фазе для насадочных колонн. При этом коэффициент массоотдачи ст в жидкой фазе, найденный для стандартной дисковой лабораторной колонны, умножают на коэффициент пересчета Rm  [c.269]

    Метод расчета массообменных аппаратов (абсорберов, ректификационных колонн), исходя из коэффициентов массонередачи, является наиболее правильным и прогрессивным. В настоящее время мы располагаем конкретным видом критериальных зависимостей для определения Ки и коэффициентов массоотдачи и массонередачи для трубчатых (пленочных) и насадочных аппаратов [3, 4]. [c.45]

    Рещ1ркуляц11я абсорбента. При малых расходах Ь, т.е. при низких плотностях орошения Ь/(/ р) абсорбента, жидкости может оказаться недостаточно для хорошего смачивания элементов насадки. В этом случае в массообмене участвует лишь часть ( активная ) поверхности насадочных тел / а < Г. Отсюда — низкая эффективность работы аппарата в целом. При рециркуляции абсорбента в работу включается дополнительная поверхность контактирования жидкости и газа, так что Г. Кроме того, растет коэффициент массоотдачи в жидкой фазе за счет турбулизации пленочного течения такой рост особенно эффективен в случае низкой пропускной способности Если при этом увеличение пропускной способности стадии массоотдачи И массопередачи в целом кхР (или куР) компенсирует уменьшение движущей силы и дополнительные затраты энергии на перекачку абсорбента снизу вверх, то рециркуляция абсорбента оправдывает себя. Ее применение также целесообразно при необходимости отвода большой теплоты абсорбции на линии возврата абсорбента устанавливают холодильник (на рис. 11.20, а не показан). О необходимости поддержания рабочей температуры процесса за счет охлаждения жидкости подробнее см. в разд. 11.2.2. [c.937]

    Насадочные абсорберы. Основные размеры насадочного абсорбера могут быть рассчитаны по расходу газа, его средней скорости и требуемой поверхности массообмена F. Последняя определяется из общего уравнения массопередачи, с помощью которого средняя движущая сила находится без затруднений (см. главу IX). Напомним только, что под величиной F подразумевается не геометрическая (Fr), а активная поверхность насадки, т. е. F = = F/фа. Таким образом, если удельная геометрическая поверхность насадки равна а м /м , а площадь поперечного сечения абсорбера составляет / м , то рабочая высота аппарата Н (высота слоя насадки) выразится так Н = Flaf = FJ(p af. Для расчета Н достаточно, очевидно, знать коэффициент массоперадачи Ку, что требует, в свою очередь, предварительно определить коэффициенты массоотдачи /(у и K i- [c.495]

    Что касается поверхности контакта фаз, то равенство ее для модельного и промышленного аппаратов безусловно является необходимым условием моделирования. Поскольку при барботаже размер пузырей не зависит от диаметра аппарата, а влияние пристенного эффекта на удельную поверхность контакта фаз при Z)aim>0,4 м невелико [1], по-видимому, диаметр модельного аппарата может быть принят близким к указанному. По данным, приведенным в работе [182], объемный коэффициент массоотдачи в барботажном слое весьма незначительно изменяется с увеличением диаметра аппарата Dann- Для насадочных аппаратов поверхность контакта фаз также не должна изменяться с увеличением диаметра при условии сохранения тех же скоростей потоков и размера насадочных элементов. [c.172]


Смотреть страницы где упоминается термин Коэффициенты массоотдачи насадочных: [c.82]    [c.147]    [c.183]    [c.290]    [c.919]    [c.298]    [c.558]    [c.95]    [c.107]    [c.633]   
Абсорбция газов (1976) -- [ c.388 , c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент массоотдачи

Коэффициент насадочных

Массоотдача



© 2025 chem21.info Реклама на сайте