Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная нитрующее

    Бензол. Азотная Нитро- [c.8]

    При отсутствии минеральной кислоты (соляной, серной или азотной) нитрит не окрашивает иодкрахмальную бумажку. [c.70]

    Фторированные парафины исключительно устойчивы против действия таких химических агентов, как азотная и серная кислоты, олеум, нитрующая смесь и т. п. Они совершенно негорючи и по крайней мере до 500° вполне стабильны. [c.118]


    Указанная фирма нитрует азотной кислотой при температуре 410° главным образом пропан, выделенный из природного газа или газов переработки нефти. При этом в качестве продуктов нитрования получают нитрометан и нитроэтан (образующиеся в результате происходящего при нитровании расщепления С—С связи), а также приблизительно в равных количествах оба теоретически возможных нитропропана (1- И 2-нитропропан). [c.266]

    В последнее время оказалось возможным нитровать также и высокомолекулярные углеводороды благодаря наблюдению Грундмана [6], который установил, что при достаточно высоких температурах— уже при 160—180°—происходит очень быстрое нитрование парафиновых углеводородов в жидкой фазе перегретыми парами азотной кислоты или двуокисью азота. Оказалось, что реакция эта не зависит от концентрации азотной кислоты. При этом необходимо, чтобы применяемые для нитрования углеводороды или техническая смесь углеводородов обладали начальной точкой кипения выше 180°. [c.266]

    Первые лабораторные опыты газофазного нитрования проводились с нарами азотной кислоты этот нитрующий агент применен также и в промышленном масштабе, как описано в предыдущем параграфе. [c.294]

    В промышленности парафиновые углеводороды нитруются в газовой фазе азотной кислотой. Насколько известно, повсюду для нитрования применяется пропан, так как он при температуре нитрования [c.296]

    Азотная кислота является лучшим нитрующим агентом, чем двуокись азота. Бахман и сотрудники это объясняют тем, что азотная кпслота, образуя ОН-радикалы, увеличивает количество алкильных радикалов, имеющее решающее значение для протекания реакции [П8  [c.299]

    Превращения нитрующих агентов (азотной кислоты или двуокиси азота) сильно увеличиваются при добавлении воздуха или кислорода [120]. [c.300]

    Фрэнсис и Юнг [123] та.кже исследовали действие дымящей азотной кислоты на парафиновые углеводороды при их точке кипения. Они нитровали изогептан, изогексан и изопентан путем длительного кипячения их с обратным холодильником в течение нескольких дней с дымящей азотной кислотой. [c.302]

    Как показал Марковников [125], при употреблении нитрующей смеси требуется более высокая температура реакции, чем при азотной кислоте. Это объясняется тем, что и без того малая растворимость углеводородов в азотной кислоте еще более понижается в присутствии серной кислоты. Поэтому изложенный метод не получил применения в промышленности. [c.302]


    Если применять внешнюю подачу тепла, то можно нитровать и разбавленной азотной кислотой, причем выход нитросоединений мало меняется, как это показано в табл. 95. [c.306]

    Напротив, удалось нитровать нитропропан в динитропродукты, подвергая нитропропан в гомогенной системе действию азотной кислоты при низкой температуре. Для этой реакции используется 2-нитропропан, который при этом переходит в 2,2-динитропропан. Динитросоединения [c.339]

    Нитрование ароматических соединений осуществляют главным образом смесью азотной и серной кислот. Серная кислота является катализатором, водоотнимающим средством й средством, препятствующим окислительным процессам. Нитрующая способность смеси находится в прямой зависимости от концентрации серной кислоты. [c.117]

    В зависимости от свойств нитруемого соединения реакция нитрования протекает при температуре от 40 до 110°С и различных соотношениях азотной и серной кислот и воды. Нитрование ароматических соединений является экзотермической реакцией (выделяется 151 кДж тепла на один моль нитрогруппы). Тепловой эффект реакции возрастает при разбавлении нитрующей смеси выделяющейся водой и меняется в зависимости от концентрации серной кислоты. [c.117]

    Отраслевыми правилами по технике безопасности производства азотной кислоты время розжига сеток контактных аппаратов ограниченно — не более 10 мин, чтобы предотвратить взрыв отложений нитрит-нитратных солей на лопатках ротора и внутренних стенках корпуса нитрозных вентиляторов и турбокомпрессоров. [c.46]

    Как уже отмечалось ранее, контактирование нитрозных и других газов, содержащих окислы азота, с аммиаком и последующее образование и накопление нитрит-нитратных солей в скрубберах, трубопроводах неоднократно приводили к взрывам на производстве. Возможность взрыва по этим причинам не исключается и в производстве аммиачной селитры в аппарате нейтрализации азотной кислоты. Наиболее вероятным местом накопления нитрит-нит-ратных солей является верхняя промывная часть аппарата нейтрализации (рис. И-1). [c.49]

    Для современных крупнотоннажных агрегатов получения селитры разработана система полной автоматизации процесса нейтрализации, которая весьма надежна и может обеспечивать заданный режим, исключающий образование и накопление в аппарате легко взрывающихся нитрит-нитратных солей (рис. П-2). Однако при эксплуатации такой системы с изменением нагрузки на агрегат отмечались случаи нарушений соотношения аммиака и кислоты, что многократно приводило к повышению кислотности раствора и плава аммиачной селитры. Эти нарушения были обусловлены тем, что система дозировки не обеспечивала стабильного давления азотной кислоты перед клапанами, регулирующими ее подачу в аппарат нейтрализации, что объясняется подачей кислоты от одного насоса (через коллектор) на два аппарата нейтрализации одновременно. [c.50]

    Применение аммиака, азотной кислоты, нитрит-нитратных солей аммония, нитрозных газов, содержащих аммиак, требует особого внимания, так как из этих веществ могут образовываться взрывоопасные смеси. Невнимательное отношение к возможным опасностям может привести к серьезным авариям. [c.93]

    В промышленности наиболее широко применяют процессы нитрования ароматических соединений нитрующей смесью азотной и серной кислот как непрерывным, так и периодическим методом. Для нитрования применяют чугунные нитраторы, снабженные пропеллерной быстроходной мещалкой, рубашкой и змеевиком для охлаждения и нагревания. Смеси кислот после нитрования часто регенерируют. Нитрование азотной кислотой обычно ведут при большом избытке ее в аппаратах из специальной стали или покрытых эмалью. [c.357]

    Поскольку нитрование можно проводить как азотной кислотой, так и двуокисью азота, Бахман и другие предположили, что нитрующим агентом является N02, которая образуется, но-видимому, следующим образом  [c.81]

    При использовании азотной кислоты достигается более глубокое пре-вращение, считая на нитрующий агент, чем при применении только N02-Предполагается, что радикал ЛЮз способен атаковать угленодороды с образованием алкильных радикалов  [c.82]

    Позже М. Коновалов [2] и В. Марковников [3] начали, свои классические работы по нитрованию алифатических углеводородов, ставшие общепризнанными и широко известными. Особенно работами Коновалова в запаянных трубках впервые было показано, что парафиновые углеводороды могут нитроваться относительно легко и с хорошими выходами при определенных- условиях — высокие температуры и разбавленная азотная кислота. После этих первых успешных опытов изучение прямого нитрования парафиновых углеводородов не продолжа- [c.265]

    Такое же благоприятное влияние оказывают галогены. Они обра-З уют свободные радикалы, как это уже известно, из реакции хлорирования. Образующийся галоидоводород опять окисляется в свободный галоген, и последний действует снова радикалообразующе. По этой причине для ускорения реакции нитрования галогена требуется значительно меньше, чем кислорода. Кроме того, галогены оказывают благоприятное действие вследствие того, что они соединяются с окисью азота в хлористый нитрозил и тем самым не происходит обрыва цепи. Кислород в условиях газофазного нитрования не может так быстро окислять N0 в ЫОг- Азотная кислота, как и N02, может употребляться как нитрующий агент. Действие азотной кислоты основывается лишь на том, что она поставляет N02 это происходит путем термического разложения ННОз0H + N02. Распад с образованием радикалов также объясняет, почему с азотной кислотой получаются лучшие результаты, чем с N02 [89]. При разложении азотной кислоты образуются чрезвычайно активные гидроксильные радикалы, которые при взаимодействии с углеводородом сразу же образуют алкильные радикалы НН + ОН-> К + Н20. Поэтому, как нашел Бахман с сотрудниками, добавка кислорода прн нитровании с двуокисью азота имеет относительно больший эффект, чем при применении самой азотной кислоты. Но и N02, как таковая, способствует образованию радикалов и одновременно нитрует. [c.285]


    В продуктах реакции газофазного нитрования парафиновых углеводородов до сего времени не найдены динитросоединения, вероятно, вследствие того, что при высокой температуре реакции тотчас же наступает пиролиз ди- и полинитросоединений. После достаточно точного изучения техники газофазного нитрования и переработки продуктов реакции Данциг и Хэсс [100] попытались путем прямого нитрования парафинового углеводорода специфического строения изолировать динитросоединения. Для этой цели они нитровали в газовой фазе при температуре 408—410° парафиновый углеводород с двумя третичными атомами водорода, а именно 2,3-диметилбутан (СНз)2СН — СН (СНз)2, в следующих условиях 68%-ная азотная кислота в виде тщательной смеси с изопропилом, подаваемой в апаратуру при 408—410°, продолжительность реакции 1,2 сек. и молярное отношение углеводород ННОз, равное 1,6 1. Превращение за один проход через аппаратуру, одинаковую с аппаратурой для нитрования пентана, составляет в расчете на [c.293]

    В 1880 г. Бельштейн и Курбатов [121] впервые обнаружили, что ири нагревании фракций кавказской нефти или гептана с азотной кислотой или со смесью азотной и серной кислот можно получить в небольших количествах нитроуглеводороды. Эти авторы получили преимущественно нитросоединения циклических углеводородов, так как нафтены нитруются легче, чем парафины, имеющие открытые цепи. Таким путем была освобождена от нафтенов фракция 95— 100° американской нефти. Факт частичного нитрования также и парафинов показывает, что при обработке гептана азотной кислотой получают небольшие количества ннтрогептана. [c.300]

    В то время как при температурах 115—120° с азотной кислотой удельного веса 1,155 (25%-ной) образуется еще очень мало нитропарафинов, при повышении температуры реакции до 140—150° выход нитоо-парафинов достигает 60% из расчета на израсходованный углеводород. Концентрация азотной кислоты не играет здесь решающей роли. Коновалов успешно нитровал, применяя также 13%-ную азотную кислоту (З дельный вес 1,075) при указанных температурах обычно требовалось [c.303]

    При повторных исследованиях протекания реакции нитрования по Коновалову Титов ясно показал, что парафиновые углеводороды в отсутствии NO2 не нитруются. При 50-часовом стоянии 2,7,-диметилоктана с азотной кислотой удельного веса 1,42 при 12—15° в присутствии мочевины нитрование не наступает. При добавлении NO2 при прочих благоприятных условиях наступает реакция образования первичных и третичных нитоосоединений. Подобный же результат Титов получил и при [c.303]

    Тетранитрометаи на пр1актике получают не прямым нитрованием. В промышленности его получают действием высококонцентрированной азотной кислоты на ангидрид уксусной кислоты или ацетилен. При этом работают в присутствии катализатора — нитрата ртути — и получают сначала нитрогЬорм, который нитруют дальше до образования тетранитрометана [200]. [c.340]

    В концентрированной НМОд в качестве растворителя [93] при (HNOз) > > (АгН) скорость зависит только от первой степени концентрации АгН. В менее кислых растворителях, таких, как нитрометан и уксусная кислота, при постоянном избытке НМОд над АгН скорость реакции для очень реакционноспособных ароматических соединений [93] становится нулевого порядка по АгН. Это выполняется в случае бензола, толуола, ксилолов, п-хлорани-зола и алкилбензолов, все эти соединения нитруются с одинаковой скоростью. Предложенный механизм предполагает, что медленной стадией является разрыв связи в азотной кислоте [c.503]

    В производстве азотной кислоты применяют, перерабатывают и получают взрывоопасные и токсичные вещества (аммиак, природный газ, оипслы азота, азотную кислоту, нитритные и нитратные соли). Поэтому нарущения технологического режима и правил техники безопасности могут привести к а) образованию взрывоопасной смеси аммиака с воздухом в контактных аппаратах, смесителях, коммуникациях и ее взрыву б) загазованности производственных помещений, территории предприятия аммиаком и окислами азота и интоксикации ими людей в) образованию взрывоопасной смеси природного газа с воздухом и взрыву ее в аппаратуре и производственных помещениях г) образованию и отложению нитрит-нитратных солей и их взрыву в нитрозных вентиляторах, турбокомпрессорах, в аппаратуре и коммуникациях узла розжига контактного аппарата и др. д) образованию взрывоопасной газо- или паровоздущной смеси в отделении концентрирования слабой азотной кислоты при подаче избыточного количества жидкого или газообразного топлива в топки концентраторов несвоевременное зажигание топлива может привести к взрыву в топке е) воспламенению замасленной поверхности и необезжиренной аппаратуры и коммуникаций при прорыве кислорода из системы получения кон-ценгрированной азотной кислоты прямым синтезом или при подаче его в загрязненную органическими веществами аппаратуру  [c.40]

    Для раствореия отложений солей, образующихся во время розжига катализаторных сеток контактных аппаратов, должна быть предусмотрена пропарка нагнетателей, турбокомпрессоров, аппаратов и трубопроводов. Чтобы предотвратить попадание нитрит-нитратных солей в нитрозный компрессор, нужно нитрозные газы перед подачей на компрессор подвергнуть промывке азотной кислотой. Для этого можно установить тарельчатый газовый промыва-тель. Нитрозный газ должен последовательно проходить четыре [c.46]

    Для предупреждения образования и накопления нитрит-нитратных солей и исключения возможности их взрыва в аппарате нейтрализации необходимо строго выдерживать технологический режим нейтрализации азотной кислоты в соответствии с проектом. Дозировка азотной кислоты, аммиака, серной и фосфорной кислот должна регулироваться в заданном соотношении только автоматически. Нельзя допускать работу аппарата нейтрализации без орошения его промывной части конденсатом. Для этого автоматически должен регулироваться реж1им конденсации сокового пара [c.49]

    Перед началом нитрования в реактор загружали уксусной ангидрид, охлаждали его до —5 °С и при постоянном перемешивании в течение I—1,5 ч приливали азотную кислоту, не допуская нагрева выше О °С. По окончании загрузки азотной кислоты полученную нитрующую смесь охлаждали до —8 С, затем в течение 3,5—5 ч приливали смесь метилового эфира трйт-бутилметакре-зола и уксусного ангидрида при —5—3 С. После окончания прилива этой смесн охлаждение прекращали и массу выдерживали в течение 1 ч при —3—О °С и постоянном перемешивании. [c.361]

    При расследовании комиссии не удалось установить конкретную причину взрыва в реакторе. Полагают, что разложение реакционной массы было вызвано недостаточным охлаждением и остановкой мешалки. Другой причиной взрыва могла быть быстрая подача нитруемой смеси при недостаточном теплосъеме, что привело к росту температуры и давления в аппарате. Разрыв предохранительной мембраны не обеспечил полного сброса давления, что и привело к разрушению аппарата. Комиссия установила, что нитрующим агентом по существу был ацетилнитрат, образующийся при смешении уксусного ангидрида с азотной кислотой. Известно, что ацетилнитрат СНзСО-ОЫОз мгновенно разлагается под воздействием воды при нагревании. При этом выделяется большое количество тепла и газов. В отсутствие воды ацетилнитрат может сохраняться при температуре ниже 20°С в течение нескольких суток. Как показали расчеты, теплота взрывчатого превращения нитрующей смеси равна 2180 кДж/кг (520 ккал/кг), т. е. потенциальная опасность взрыва создалась еще до начала нитрования, по окончании загрузки азотной кислоты и уксусного ангидрида. [c.362]


Смотреть страницы где упоминается термин Азотная нитрующее: [c.58]    [c.40]    [c.126]    [c.126]    [c.129]    [c.294]    [c.302]    [c.303]    [c.306]    [c.49]    [c.357]    [c.46]    [c.79]    [c.80]    [c.81]    [c.83]   
Химия и технология химико-фармацевтических препаратов (1954) -- [ c.63 ]




ПОИСК







© 2024 chem21.info Реклама на сайте