Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны спиртов

    Вторая группа — газообразные и парообразные примеси —более многочисленна. К ней относятся, например, кислоты, галоиды и галоидопроизводные, газообразные оксиды, альдегиды, кетоны, спирты, углеводороды, амины, пиридины, меркаптаны, пары металлов и многие другие компоненты газообразных промышленных отходов. Необходимость ликвидации газообразных промышленных выбросов или хотя бы их глубокой очистки диктуется не только вредностью для людей, растений и животного мира. Промышленные выбросы в атмосферу ведут к значительным экономическим потерям, так как безвозвратно теряются большие количества ценных продуктов — органических растворителей, металлов, диоксида серы и др. Помимо того, наличие в воздухе химикатов вызывает преждевременную коррозию металлов в промышленных районах сталь ржавеет в 3—4 раза быстрее, чем в сельской местности. [c.228]


    Было установлено, что присутствие функциональных групп в парафиновых углеводородах нормального строения не препятствует образованию продуктов присоединения при этом важно лишь, чтобы алкильный остаток, связанный с функциональной группой, имел нормальное строение. Поэтому способность образовывать комплексные продукты присоединения обнаруживают также карбоновые кислоты, сложные эфиры, галоидные соединения, кетоны, спирты, амины и т. д. [c.55]

    Не растворимые в щелочи, но растворимые в петролейном эфире соединения снова возвращают в процесс нитрования. Ввиду наличия в них продуктов окисления (кетонов, спиртов), которые при дальнейшем окислении образуют карбоновые кислоты, расход азотной кислоты повышается по сравнению с расходом ее при использовании чистых углеводородов. [c.312]

    Установка включает следующие основные секции подготовки сырья до требуемой температуры (при переработке гудрона, поступающего непосредственно с вакуумной установки, необходимо его охлаждение до требуемой температуры с использованием тепла на нагрев нефти в теплообменниках) окисления в колоннах (реакторы колонного типа непрерывного действия) конденсации паров нефтепродуктов, воды, низкомолекулярных альдегидов, кетонов, спиртов и кислот, а также их охлаждение сжигания газообразных продуктов окисления. Технологическая схема установки представлена на рис. ХИ-1. [c.106]

    Растворитель и мономеры должны содержать минимальное количество веществ, дезактивирующих активные полимерные цепи. К таким веществам относятся вода, кислород, альдегиды, кетоны, спирты, окись и двуокись углерода и т. п. Допускаемое количество примесей исчисляется десятитысячными и стотысячными долями процента. Такая чувствительность данного синтеза к примесям требует при промышленной реализации высокой культуры производства. [c.285]

    Эти вещества часто хо/рошо кристаллизуются п могут быть превращены в кетоно-спирты действием уксуснокислого натрия  [c.30]

    Неполное окисление углеводородов при низких температурах (300—700°) нашло широкое промышленное распространение для получения многих химических полупродуктов — альдегидов, кетонов, спиртов, кислот и других соединений. [c.14]

    Опытам на окисление предшествовали широкие исследования работы вихревой трубы при различных температурах воздуха на входе (до 400°С), обсуждение которых не входит в нашу задачу. В качестве реактора использовали теплоизолированную из стали 10 вихревую трубу 0 20,4x5 мм длиной рабочей зоны 208 мм, с диаметром сопла ТЗУ 2,6 мм, с диафрагмой 5,2 мм. Параметры потоков измеряли термопарами и образцовыми манометрами в расширительных камерах расход газа (0- 20 нм /ч) на входе в вихревой ректор и выходе нагретого потока измеряли расходомерами типа РЭД со вторичными приборами типа ЭПИД. Хроматографический анализ окисляемого газа проводили для каждого опыта, содержание пропана составляло от 52,5 до 60,8% масс. Продукты реакции в охлажденном и нагретом потоках определяли на групповое содержание альдегидов, кетонов, спиртов и кислот по известным методикам [61]. Схема установки приведена на рис. 1.8 (раздел 1). Условия первого опыта (табл. 2.12) не обеспечили начало реакции, что следует и из рекомендации работы [60], [c.127]


    Одновременно образуются спирты, ацетон и т. д. Альдегиды, кетоны, спирты окисляются кислородом до кислот, двуокиси углерода, воды, и т. д. Кислород может образоваться при распаде азотной кислоты или двуокиси азота  [c.438]

    Наряду с далеко не полным перечнем приведенных выше химических процессов в нефтехимической промышленности широко используются процессы окисления, позволяющие получать фенол, окись этилена, альдегиды, кетоны, спирты и другие продукты, а также хлорирование, сульфирование, нитрование и т. д. [c.583]

    Установлено [56], что растворимость парафина в таких полярных растворителях, как кетоны, спирты и жирные кислоты, возрастает с увеличением числа атомов углерода в молекуле растворителя, а растворимость в хлорпроизводных зависит от числа атомов хлора при одном и том же углеродном атоме и от числа атомов углерода в радикале при одном и том же числе атомов хлора. По растворяющей способности по отнощению к парафинам алифатические растворители с полярными группами могут быть расположены в следующем порядке  [c.75]

Таблица За. Число групповых пар в системе кетон — спирт — вода при 60 С Таблица За. Число групповых пар в системе кетон — спирт — вода при 60 С
    Таким образом, оказалось возможным по данным о чистых компонентах и бинарных смесях получить достаточно точную информацию о свойствах разнообразных многокомпонентных систем, в том числе содержащих воду, полярные органические растворители (кетоны, спирты, нитрилы и т. д.), а также парафиновые, нафтеновые и ароматические углеводороды. [c.10]

    В зависимости от природы, стадии химической зрелости и состава твердых топлив в их первичных смолах содержится различное количество парафиновых, ароматических и гидроароматических углеводородов, фенолов, многоядерных ароматических соединений, органических оснований, карбоновых кислот, кетонов, спиртов и сложных эфиров. [c.246]

    Гидрирование ароматических кислородсодержащих соединений (альдегидов, кетонов, спиртов, карбоновых кислот и т. д.) может протекать в двух основных направлениях — превращение ароматического кольца в нафтеновое и восстаноз-ление кислородной группы. По сравнению с гидрированием алифатических соединений имеется ряд особенностей. [c.44]

    Для выделения кислородсодержащих соединений из нефтей и высококипящих фракций может использоваться метод комплексообразования. Например, обработкой тетрахлоридом титана фракции 300—350 °С нефти Советского месторождения, 300—400 °С смеси тюменских нефтей получают концентрат кислот, кетонов, спиртов и гетероатомных соединений других классов с выходом до 2 % от сырья [211, 212]. [c.93]

    Гидроперекиси алкилароматических углеводородов в зависимости от катализатора и других условий могут расщепляться с образованием фенолов и жирных кетонов, жирноароматических кетонов, спиртов и продуктов нх дегидратации — арилолефинов. Для гидронерекиси изопропилбензола такое расщепление можно представить схемой  [c.299]

    Было установлено, что реакции оксосинтеза имеют общее значение. С окисью углерода под давлением, в присутствии катализаторов, могут реагировать не только олефины и диолефины, но также непредельные кетоны, спирты, сложные эфиры и т. д. [c.728]

    В качестве промежуточных про 5 у ктов образуются пероксиды (перекиси), которые далее распадаются с образованием очень нужных кислородсодержащих соединений - альдегидов, кетонов, спиртов, кислот. При окислении образуется много СО,. [c.49]

    Другой характерной чертой четвертого периода должны явиться интенсивные поиски методов управления газофазным окислением углеводородов. Последнее настоятельно диктуется острой потребностью народного хозяйства и в первую очередь промышленности тяжелого органического синтеза в таких кислородсодержащих продуктах окисления углеводородов, как альдегиды, кетоны, спирты, кислоты, перекиси. [c.10]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]


    Нитрование всегда сопровождается окислением с образованием Э рганических кислот, альдегидов, кетонов, спиртов, нитрйтов, нитросоединений, нитроолефпнов, окиси и закиси углерода. [c.299]

    Академическое изучение частичного окисления имело своей целъю> создание удовлетворительных механизмов реакций горения углеводородов. fj wibuioe количество прикладных исследований в этой области, широко отраженных в патентной литературе, было направлено на использование дешевых и доступных парафиновых углеводородов в качестве источников альдегидов, кетонов, спиртов и кислот, являющихся основой промышленной химии алифатических соединений. [c.318]

    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]

    К товарным маслам, составлявшимся из этих эфиров и SS-903 или SS-906, нередко добавлялись антиокислитель-ные и антикоррозионные добавки месулфол П и KSE, задачей которых являлось предохранение поршневых колец от пригорания и подшипников из цветных металлов от выкрашивания. Месулфол II готовился следующим образом. Амилксан-тат, растворенный в кетонах, спирте или воде, взаимодействовал с этилендихлоридом при 70°  [c.425]

Таблица 36. Параметры системы кетон — спирт вода для использования в методе ASOG Таблица 36. <a href="/info/3489">Параметры системы</a> кетон — спирт вода для использования в методе ASOG
    К углеводородам этого типа относятся преимущественно 2,6-диметил-, 2,6,10-триметил- и 2,6,10,14-т2траметилалканы. В настоящее время описан синтез больщей части изопреноидных углеводородов нефти как модельных. В общгм виде синтез соединений этого типа проводится по схеме кетон —спирт непредельный углеводород- алкан. [c.107]

    Гетерогенным и гомогенным окислением газообразных метановых углеводородов получают альдегиды, кетоны, спирты. Так, окис-лон1 ем метана кислородом воздуха в присутствии окислов азота получают формальдегид. При окислении пропана и бутана в жидкой фазе воздухом в присутствии ацетатов металлов образуется смесь спиртов, альдегидов и кетонов. [c.59]

    Широко применяется для разделения смесей высокомолекулярных органических соединений метод, основанный на избирательном растворяющем действии по отношению к компонентам смеси различных органических растворителей, таких, как бензол, фенол, тетралип, петролейный эфир, кетоны, спирты, пиридин, хлорированные [c.116]

    При нитровании алканов в газовой фазе полинитросоединений не образуется, онн могут образовываться в жидкой фазе. Нитрование всегда сопровождается и окислением органической молекулы до кислот, альдегидов, кетонов, спиртов. Среди продуктов реакции, кроме ннтроалканов, обнаружены нитриты, нитроалке-ны, оксиды азота. Относительная скорость замещения водородных атомов нитрогруппой растет от первичных атомов к вторичным, от вторичных к третичным. С увеличением температуры относительная скорость реакции сближается. Скорость замещения водорода третичных атомов углерода при низких температурах намного выше скорости замещения водорода первичных и вторичных атомов углерода. Катализаторы больше ускоряют окисление углеводорода, чем его нитрование. Воздух и кислород интенсифицируют процесс нитрования. Реакция нитрования углеводородов экзотермична. [c.203]

    Способность образовывать комплексы обнаруживают также олефины, диолефины, карбоновые кислоты, сложные эфиры, галоидзамещенпые нормальных парафинов, кетоны, спирты, меркаптаны, амины и др. При этом имеет место одна закономерность легкость образования комплекса и его стабильность увеличиваются с ростом цепи. Неразветвленные моноолефины и диолефины легче образуют комплекс, чем разветвленные. Полиолефины как с разветвленной, так и с неразветвленной ценью, содержащие три и более двойных связи, не образуют комплекса. Это объяс- [c.20]

    Реакции, протекающие при взаимодействии углеводородов, содержащихся в нефтяных фракциях, с молекулярным кислородом, имеют огромное практическое значение в процессах хранения и сгорания моторных топлив, при использовании смазочных масел, а также в технологии основного органического синтеза при производстве ряда кислородных соединений углеводо-оодов (альдегиды, кетоны, спирты, эфиры, кислоты и т. п.). [c.163]

    Нефтью называется природная смесь углеводородов различных классов с различными сернистыми, азотистыми и кислородными соединениями. По внешнему виду нефть представляет собой маслянистую жидкость, обыкновенно бурого цвета, хотя встречаются нефти, имеющие более светлые оттенки коричневого цвета. Вязкость нефти различна и зависит от состава. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 10 ООО калорий на килограмм. В минералогическом отношении нефть относится к числу горючих ископаемых или каустобиолитов. Нефть практически ие содержит химически активных веществ вроде кетонов, спиртов и т. п. соединений, хотя в некоторых случаях имеет кислотный характер вследствие незначительного содержания кислот. Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов. Нефть часто сопровождается в природе различными окаменелостями, позволяющими определить геологический возраст нефти в ее современном залегании. Обыкновенно нефть сонровояодается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды. [c.5]

    Газотурбинные авиационные двигатели загрязняют окружающую среду при стендовых испытаниях. В ходе стендовых испытаний двигателей на моторостроительных предприятиях, находящихся, как правило, в зонах крупных жилых массивов, отработавшие газы наносят особенно существенный ущерб здоровью людей и растительности. Специфика ис-лытаний двигателей приводит к тому, что выбросы содержат широкий спектр вредных веществ оксиды углерода, низкомолекулярные и высокомолекулярные углеводороды, продукты термоокислительной деструк-пии топлива (альдет иды, кетоны, спирты), дисперсную фазу в виде аэро-зэлей топлива, масла и сажи. [c.206]

    Норриш, как и ряд авторов до него, подчеркивает то обстоятельство, что феноменология холоднопламенного окисления одинакова для углеводородов, алифатических эфиров, альдегидов, кетонов, спиртов. Это дает основание предположить обш,ую причину возникновения холодных пламен у всех этих классов соединений. Такое заключение получает серьезное подтверждение в том, что ддя холодных пламен всех названных соединений характерен один и тот же спектр флуоресценции формальдегида. Тот же факт, что, с одной стороны, холодные пламена возникают при окислении альдегидов, а с другой стороны, альдегиды являются обш,ими промежуточными продуктами, возникаюш ими при окислении всех соединений, дающих холодные пламена,— заставляет искать причину холоднопламенного явления в реакциях, связанных с альдегидами. При этом, хотя холоднопламенное свечение обусловлено возбужденным формальдегидом, сам формальдегид при своем окислении не дает холодного пламени. Таким образом, не он и не его превращения, а реакции, связанные с высшими альдегидами, ответственны за возникновение холодных пламен. А так как эти пламена характерны для нижнетемпературного окисления, то, следовательно, высшие альдегиды, а не формальдегид являются активными промежуточными продуктами окисления в этой температурной области. [c.256]

    В ТСХ применяют оксид алюминия, выпускаемый отечественной промышленностью под маркой оксид алюминия для хроматографии , образующий на пластинке прочный слой. Оксид алюминия для хроматографии может поступать в продажу в основной, нейтральной или кислой форме. Основную форму применяют для разделения смесей аминов, основных аминокислот и других основных соединений. Нейтральная форма позволяет хорошо разделять из не-водных растворов смеси таких веществ, как алканы, альдегиды, кетоны, спирты, эфиры, фенолы. Кислая форма применяется для разделения смесей карбоновых кислот и других веществ кислого характера. Из иностранных фирм, готовящих оксид алюминия для тех, следует указать фирмы Флюка (Швейцария), Вёльм (ФРГ) и Бакер (США). [c.129]

    Катализаторами при этом могут быть концентрированные кислоты (Н2504 и НаР04) или N (00)4 (тетракарбонилникеля). Процесс проводят при высокой температуре и давлении, С помощью этой реакции получают олефины, ацетилены, альдегиды и кетоны, спирты, кислоты и др, Оксо-синтез кислот может идти в две стадии вначале синтезируют альдегиды (см. с. 124), а затем их окисляют в кислоты. [c.141]

    Диоктилсебацинат (октойл S) gHijOO СН2)в OO jH,,. Мол. вес 426,69, плотн. 0,913, т. кип. 248° С при 4 мм рт. ст. Максимальная рабочая температура колонки 150° С. Рекомендуемые растворители дихлорметан, ацетон, хлороформ. Применяется для разделения насыщенных и ароматических углеводородов, низших жирных кислот, эфиров, кетонов, спиртов. [c.282]


Смотреть страницы где упоминается термин Кетоны спиртов: [c.161]    [c.358]    [c.339]    [c.326]    [c.8]    [c.55]    [c.157]    [c.26]    [c.41]    [c.211]    [c.150]   
Углублённый курс органической химии книга2 (1981) -- [ c.308 , c.314 ]

Препаративная органическая химия Реакции и синтезы в практикуме и научно исследовательской (1999) -- [ c.2 , c.4 , c.22 , c.256 ]

Органическая химия Том2 (2004) -- [ c.152 ]

Органическая химия (1956) -- [ c.172 , c.231 ]




ПОИСК







© 2024 chem21.info Реклама на сайте