Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластинки фотографические проявление

    Антикатод делают из простого вещества, спектр которого хотят исследовать, или же на платиновый антикатод наносят какое-либо соединение исследуемого элемента. Возникающее рентгеновское излучение 4 антикатода направляют через кристалл (играющий роль дифракционной решетки) на фотографическую пластинку. После проявления на ней выступают линии спектра. В настоящее время рентгеновские спектры чаще всего получают, возбуждая вещество жесткими рентгеновскими лучами. [c.142]


    В третьих, заметную роль могут играть погрешности, обусловленные свойствами фотоэмульсии. К ним относятся краевой эффект (большая скорость проявления на краях пластинки) и зернистость фотографического изображения. Последний фактор приводит к тому, что апертура пучка, прошедшего через фотопластинку при измерении почернения, оказывается больше апертуры падающего пучка и часть пучка теряется, т. е. не участвует в образовании изображения линии на измерительной щели микрофотометра (рис. 3.28). В результате вместо (1) имеет место соотношение [c.126]

    Разработано множество методов обнаружения излучения, испускаемого радиоактивными веществами. Беккерель открыл радиоактивность благодаря воздействию радиоактивного излучения на фотографические пластинки. Долгое время для обнаружения радиоактивности использовали фотографические пластинки и пленку. Радиоактивное излучение действует на фотографическую пленку точно так же, как обычный свет. Фотопленку можно использовать и для установления количественной меры радиоактивности. Чем больще экспозиция (воздействие) излучения, тем плотнее потемнение на проявленном негативе. Те, кто работает с радиоактивными веществами, носят на себе в качестве индикатора фотопленку, которая регистрирует количество получаемого ими облучения. [c.258]

    После проявления фотографических материалов — пластинок или пленок, их необходимо закрепить. Закрепление сводится к растворению невосстановленного бромистого серебра. Полученное изображение является негативным те места эмульсии, куда попадало много света — самые светлые части изображения, на негативе получаются самыми темными, так как там выделилось наибольшее количество коллоидного серебра. Наоборот, самым темным местам изображения соответствуют прозрачные места эмульсии. [c.158]

    Хранить проявители следует в закупоренных склянках, отливая в ванночку для проявления каждой пластинки небольшое количество раствора. Сухие реактивы для приготовления проявителя, особенно проявляющие вещества и сульфит натрия, следует хранить в плотно закрытых банках. Обычно в спектральных лабораториях готовится большое количество проявителя. После приготовления проявителя желательно проверить его качество по контрастности фотографических пластинок, проявленных в стандартных условиях. [c.168]

    Проявление фотографических материалов ведут всегда только по времени. Время, необходимое для проявления, обычно указывают в рецептах проявителей. Но лучше определять продолжительность проявления для данных фотоматериалов опытным путем. При проявлении контрастность изображения сначала увеличивается, затем в течение некоторого времени остается постоянной, а затем начинает слегка уменьшаться из-за сильного увеличения вуали (рис. 108). Проявляя фотографические пластинки одного типа разное время, строят кривую, аналогично кривой, показанной на рисунке, и находят оптимальное время проявления. [c.168]


    При проявлении фотографических пластинок необходимо энергично перемешивать проявитель у самой эмульсии, для чего пользуются мягким тампоном или кисточкой, иначе интенсивные линии ока- [c.168]

    Сушка фотографических материалов после проявления занимает довольно много времени. Для ускорения применяют сжатый воздух или сушку в вакууме. Впрочем, в большинстве случаев можно проводить измерения почернений, пользуясь мокрой пластинкой. Для этого после закрепления пластинку слегка споласкивают и, не вынимая из воды, накрывают ее эмульсию чистым стеклом такого же размера. Вынув пластинку из воды, вытирают ее с обеих сторон и фото-метрируют. После окончания измерений пластинку хорошо промывают, сушат и сохраняют в качестве документа, который может понадобиться для проверки результатов анализа. [c.169]

    При проявлении неосвещенной фотографической пластинки наблюдается вуаль 5о, т. е. почернение неэкспонированной пластинки. При увеличении [c.677]

    Угол наклона характеристической кривой а определяет контрастность фотографической эмульсии, а tga = v — фактор контрастности — является очень важной характеристикой фотографической эмульсии. Фактор контрастности фотографической эмульсии зависит от состава эмульсии и проявителя, условий проявления пластинки, длины волны падающего света и т. п. [c.678]

    Положение градуировочного графика, его угловое или параллельное смещение определяются в первую очередь фактором контрастности, в сильной степени зависящим от свойств фотографической пластинки, условий экспонирования и проявления. Фактор контрастности является трудноконтролируемой величиной и наиболее частой причиной погрешности в фотографических методах атомно-эмиссионного анализа. На положении градуировочного графика отражаются также процессы в облаке разряда и на поверхности электродов, которые описываются эмпирическими константами а, Ь. Однако их влияние можно устранить или уменьшить, применив хорошо отрегулированные генераторы и источники возбуждения спектра, обеспечив стабильный режим их работы, форму заточки постоянных электродов, подготовку стандартных и анализируемых образцов и т. д. [c.681]

    Выше отмечалось, что свойства фотографической эмульсии в значительной степени зависят от химического состава желатины (от содержания в ней аминокислот с сульфгидрильными группами). Поэтому для работы по методу постоянного графика в лаборатории необходимо иметь достаточный запас фотопластинок одной партии, одного полива. Для получения стабильных результатов фотометрирования аналитических пар линий, позволяющих длительное время получать совпадающие градуировочные графики, необходимо работать со стабильно работающими дуговыми или искровыми генераторами, строго выдерживать условия съемки спектров и проявления спектрограмм. Проявлять пластинку следует каждый раз в новой свежей порции проявителя постоянного состава строго выдерживать температуру, время и условия проявления. [c.685]

    В случае фотографической регистрации градуировочные графики претерпевают сдвиг из-за колебаний свойств фотоэмульсии от одной пластинки к другой и недостаточно точного воспроизведения условий проявления. Если при этом измеряемые почернения находятся в области прямолинейного участка характеристической кривой, то наиболее простым способом учета свойств фотоматериала может быть построение графика в координатах ) и ig . Для этого необходимо [c.405]

    Фотографическая обработка. Как и при любых фотографических работах, экспонированная пластинка (или пленка) должна пройти последовательную обработку в проявителе и в фиксаже с достаточной про-мыв кой в воде после каждой из этих операций. Для спектрографических работ желательно применение проявителя, дающего высокий контраст изображения. Для достижения лучших результатов следует придерживаться конкретных рекомендаций, даваемых для обработки каждого применяемого типа пластинок. Необходимо проводить перемешивание растворов в течение всего времени проявления, иначе может произойти неравномерное проявление пластинки, которое приведет к погрешности при количественном анализе. В любом анализе, где производится количественно сравнение спектров по их оптической плотности, процессы обработки должны быть строго идентичны имеет значение разность температур, время проявления, истощение растворов и т. д. Может также оказаться, что две пластинки имеют неодинаковую чувствительность, особенно если они взяты из двух разных пачек это может произойти от неодинакового времени хранения, температуры хранения и т. п. Для уменьшения. влияния этих потенциальных источников ошибок следует анализируемый спектр и эталонные спектры фотографировать рядом друг с другом на одной пластинке этой практики следует придерживаться всегда, когда это возможно. [c.99]

    Зависимость почернения 5 от количества освещенности Я, которое равно произведению интенсивности света на время, изображают графически в виде характеристической кривой фотографической пластинки (рис. 78). При проявлении неосвещенной фотографической пластинки наблюдается вуаль, т. е. почернение неэкспонированной пластинки. На рис. 78 она определяется отрезком ОА при нулевом значении lg Н. При увеличении освещенности характеристическая кривая плавно переходит в прямую, а затем рост ее постепенно замедляется. [c.180]


    Как видно из рисунка, даже и на неосвещенном участке проявленной пластинки (Я=0) появляется некоторое незначительное почернение, которое называют вуалью . При небольших количествах освещения почернение этого участка практически не изменяется с увеличением Я и не отличается от вуали. Только начиная с некоторого значения Н, , которое определяет порог чувствительности фотографической пластинки, почернение становится больше вуали и затем по [c.203]

    При фотографическом анализе сплавов большую долю в ошибку определения искомой концентрации вносит сам процесс фотометрирования (ошибки из-за неоднородности пластинок и вариаций условий проявления, а также ошибки измерения почернения), кроме того, на фотометрирование затрачивается значительное время. Поэтому усовершенствование других звеньев аналитического процесса не сказывается существенно на точности и быстроте определений. [c.240]

    Одновременно с этим, но очень медленно происходит восстановление серебра в кристалликах, которые не подверглись воздействию света. Этот процесс ведет к появлению фотографической вуали. После проявления невосстановленное серебро удаляют из эмульсионного слоя. Для этого применяют специальные растворы (чаще всего раствор гипосульфита натрия) и последующее тщательное промывание пластинки. [c.195]

    Вскоре после открытия Х-лучей известный французский математик Анри Пуанкаре на собрании Французской академии наук высказал предположение, что испускание Х-лучей может быть связано с флуоресценцией стекла в том месте трубки Крукса, из которого исходят Х-лучи. Это предположение заставило французского физика Анри Беккереля (1852—1908) изучить некоторые флуоресцирующие минералы. Беккерель был профессором физики Музея естественной истории в Париже, так же как его отец и дед. Его отец собрал множество флуоресцирующих минералов и нх можно было изучать в музее. Беккерель, выбрав для опыта урановую соль, выдерживал ее на солнце, пока она не начинала сильно флуоресцировать, и помещал ее на фотографическую пластинку, завернутую в черную бумагу. После проявления пластинки он обнаружил, что пластинка почернела, и это, казалось, подтверждало мысль Пуанкаре. Кроме того, Беккерель установил тогда, что соли урана вызывают почернение фотопластинки, завернутой в черную бумагу, даже в тех случаях, когда эти соли не подвергались действию солнечного света для возбуждения в них флуоресценции он показал, что такое действие оказывают любые соединения урана. Беккерель установил также, что излучение, испускаемое соединениями урана, подобно Х-лучам, разряжает электроскоп благодаря тому, что оно ионизирует воздух и делает его проводником электричества. [c.58]

    Первым наиболее успешным методом цветной фотографии, был ауто-хромный метод, разработанный во Франции приблизительно в 1904 г. По этому методу три образца крахмала, состоящего из мельчайших сферических зерен, окрашивают соответственно в красный, зеленый и синий цвета. Окрашенные зерна крахмала тщательно перемешивают, смесь наносят на поверх ность фотографической пластинки, а затем под давлением зерна спрессовываются в мельчайшие плоские окрашенные диски. После этого цветной слой крахмала покрывают светочувствительной эмульсией, экспонируют пластинку со стороны стекла и проявляют. На участках пластинки, подвергающихся воздействию красного света, происходит поглощение света зернами крахмала, окрашенными в красный свет, тогда как зеленые и синие зерна пропускают свет и он действует на светочувствительный слой под ними. При проявлении в этих местах под зелеными и синими зернами отложится серебро, а под красными его не будет. Если после проявления рассматривать этот участок пластинки на свет со стороны эмульсии, то он покажется окрашенным только в красный цвет, поскольку под красными зернами не образовалось серебра. Аналогичные явления происходят под воздействием зеленого и синего цвета зеленые и синие зерна крахмала после проявления обусловливают зеленую и синюю окраску соответствующих участков пластинки. В результате таких эффектов пластинка в целом при рассмотрении ее на свет приблизительно воспроизводит цветное изображение фотографируемого объекта.  [c.450]

    Последовательность выполнения работы. 1. Зарядить кассету фотографической пластинкой размером 9 х 24 или 9 X 12 в зависимости от участка спектра. Пластинка размером 9 хМ2 помещается в среднюю часть кассеты. Для помещения в кассету фотопластинки задняя крышка кассеты открывается и пластинка помеш,ается вниз эмульсией. После этого кассета закрывается и маховичок на крышке кассеты поворачивается в направлении закр . Заряжать кассету фотопластинкой следует в фотокабине. 2. Установить кассету в кассетной части спектрографа и прижать ее двумя винтами сверху. Выдвинуть переднюю крышку кассеты. 3. Включить водородную лампу, для чего включить стабилизатор в сеть и поставить выключатель накал в положение включено . Через 2 мин повернуть выключатель высокое напряжение в положение включено . Включить подсвет шкалы. 4. Собрать кювету, заполнить ее исследуемым веществом и поместить на столик перед входной щелью. Установить заданное положение кассеты. 5. Снять спектр поглощения с заданной экспозицией. Для этого рычажок затвор справа от входной щели ставится в положение откр . 6. Изменить положение кассеты, в кювету поместить растворитель и повторить съемку спектра с той же экспозицией. Если в работе необходима съемка нескольких спектров, то операции 5 и б повторяются. При этом необходимо каждый раз устанавливать заданное положение кассеты. 7. Снять миллиметровую шкалу. Для этого на определенное время прижимается миллиметровая шкала поворотом против часовой стрелки маховичка справа от кассеты. При этом загорается сигнальная лампа над кассетой. По окончании экспозиции миллиметровая шкала отводится от пластинки и лампочка гаснет. 8. Закрыть переднюю крышку кассеты и снять кассету. 9. Проявить и зафиксировать фотопластинку. Для проявления фотопластинки в фотокабине открыть кассету и поместить пластинку в кювету с проявителем вверх эмульсией. Кювету следует периодически покачивать. Через 8 мин фотопластинку вынуть из кюветы с проявителем, промыть водой и поместить в кювету с фиксажем. Примерно через 5—8 мин, если пластинка стала прозрачной, без белых пятен, ее вынуть из кюветы с фиксажем, тщательно промыть проточной водой и высушить. Если па пластинке имеются белые пятна, то фиксирование продолжить. [c.38]

    Для работы в области далекого и вакуумного ультрафиолета используют фотоэмульсии с очень малым содержанием желатина или вовсе без него. Обычно фотографические материалы для работы в этой области очувствляют в лаборатории, используя раствор салициловокислого натрия или покрывая эмульсию тонкпм слоем трансформаторного масла, которое светится синим светом под действием коротковолновых ультрафиолетовых лучей. Этот свет и регистрируется фотографической пластинкой. Таким методом удается получить довольно хорошую чувствительность, хотя разрешающая способность сильно понижается. Перед проявлением пластинок слой масла надо удалить промыванием в спирте. [c.166]

    Интенсивность спектральных линий определяемых элементов сразу же после включения дуги или искры сильно колеблется. Время, необходимое для достижения равновесия физико-химических процессов на электродах, определяют экспериментальным путем с помощью кривых обжига или обыскривания. Для этого включают дугу или искру и через каждые 5—10 с перемещают кассету спектрографа с фотографической пластинкой. После ее проявления по результатам фо-тометрирования спектрограммы строят кривые обжига или обыскривания, откладывая на оси ординат почернение линий 5 определяемых элементов, а по оси абсцисс — продолжительность горения дуги или искры в секундах. [c.673]

    В фотографических методах спектры анализируемых и стандартных образцов снимают на фотографическую пластинку. После ее проявления, фиксирования, промывания и высушивания с помощью специальных приборов — денситометров или микрофотометров — определяют оптические плотности почернения линий аналитических пар. По результатам фотометрирова-ния строят градуировочные графики в системе разность оптических плотностей почернения аналитической пары — логарифм концентрации и по ним определяют содержание элементов в анализируемых образцах. [c.676]

    При строго контролируемых условиях съемки спектрограмм и их проявлении на основании хорошо совпадающих результатов фотометрнрован1ТЯ эталонов, сфотографированных на многих п.пастинках, строят постоянный градуировочный график. При выполнении анализов на фотографическую пластинку снимаются только анализируемые образцы. [c.682]

    Например в ходе количественного эмиссионного спектрального определения с конечной фотографической регистрацией спектра осуществляются следующие основные процессы и операции а) испарение и перенос пробы из канала угольного электрода в плазму разряда б) возбуждение атомов элементов в плазме и излучение характеристических спектральных линий элементов в) отбор определенной доли светового потока из общего потока, излучаемого плазмой, с помощью дозирующей щели спектрографа г) пространственное разложение полихроматического излучения на соответствующие характеристические частоты (развертка спектра) с помощью призмы илн дифракционной решетки д) фотохимическое взаимодействие светочувствительного материала с квантами электромагнитного излучения (образование скрытого изображения спектра на фотопластинке или фотопленке) е) химические реакции восстановления ионов серебра до металла и растворения галогенидов серебра в комплексующих агентах (проявление и фиксирование) ж) поглощение света спектральными линиями на фотографической пластинке при измерении плотности почернения спектральных линий определяемого элемента и фона с помощью микрофотометра а) сравнение полученных значений интенсивностей спектральных линий с илтен-сивностью соответствующих линий эталонов или стандартов и интерполяция искомого содержания элемента в пробе по градиуровочному графику. [c.42]

    Фотографические методы основаны на измерении почернения фотографических пластинок или пленок под действием радиоактивного излучения или на наблюдении в фотоэмульсии треков отдельных частиц, испускаемых радиоактивным препаратом. При действии ионизирующих излучений на фотоэмульсию в зернах AgBr образуются центры скрытого изображения, что при проявлении вызывает почернение эмульсии в месте прохождения частицы (образование треков ). В зависимости от рода излучений, действие которых на фотоэмульсию неодинаково по интенсивности, различают а-, р-, у-радиографические измерения. Методом радиографии решаются следующие задачи идентификация радиоактивных изотопов, определение их концентрации, измерение периода полураспада, оценка радиохимической чистоты препарата, получение картины распределения радиоактивного изотопа по поверхности образца (радиоавтография). При этом обычно применяют тонкослойные пластинки и специальные эмульсии, созданные для целей ядерной физики. Если не рассматриваются треки отдельных частиц, определение интенсивности излучения заключается в сравнении почернения эмульсии исследуемого образца и препарата с известной активностью (эталона) под действием [c.163]

    И прибавляют третий компонент. При этом сразу возникает свечение. Позже выполнение опытов фотографическим методом было несколько усовершенствовано [46, 47]. Используют изоортохроматические контрастные пластинки чувствительностью 45—65 ед. ГОСТ, с которыми можно работать при красном свете. Обработку фотопластинки производят обычными методами, принятыми в количественном спектральном анализе проявление, закрепление, сушка. Далее пластинку фотометрируют на микрофотометре МФ-2 и определяют почернение 5 пятна и фона. Разность почернений А5 является мерой суммы света. В некоторых случаях для получения почернений в области нормальных значений приходится пользоваться ослабителями. [c.86]

    Фотографическая пластинка. Почернение некоторого участка проявленной пластинки зависит от его освещенности Е и Еремени экспозиции t. На рис. 123 показана характеристическая кривая фотографической эмульсии, передающая вид этой заЕкскмости. [c.202]

    Разные типы фотографических пластинок обладают различной контрастностью. Коэффициент контрастности может изменяться в пределах одного сорта пластинок в зависимости от рода проявителя, температуры, от продолжительности проявления, характера освещения. Кроме того, существенную роль играет длина волны света, освещающего пластинку. Поэтому при спектральных исследованиях необходимо знать у для данной длины волны. Для большинства диапазитивных и репродукционных пластинок у остается [c.201]

    Относительные плотности потемнения фотопластинки, вызываемые двумя типами ионов, не позволяют получить непосредственно значения относительной распространенности. Ионы с различными массами проходят через спектрограф с различными скоростями и обладают различной проникающей способностью, а следовательно, и различно воздействуют на фотопластинку 1109]. Ширина изображения, образованного различными ионами в спектре, изменяется вдоль фотопластинки. В спектрографе Маттауха ширина изображения пропорциональна корню квадратному из массы. В других спектрографах, где двойной фокус получается лишь в одном месте фотопластинки, ширина изображения представляет собой сложную функцию расстояния от этой точки. Так как в аналитической работе постоянно используется прибор с геометрией Маттауха, то могут быть вычислены соответствующие поправки при регистрации на одной пластинке широкого диапазона массовых чисел (от 1 до 200) поправки становятся слишком большими. Благодаря тому что воздействие положительных ионов ограничено поверхностными слоями фотографической эмульсии, наблюдается тенденция к ускорению проявления, и это может вызвать ошибки, связанные с равномерностью проявления. В качестве примера Астон [87] указывал на значения, полученные для относительной интенсивности линий изотопов никеля 61 и 64, относительная распространенность которых, установленная в настоящее время, равна соответственно 1,25 и 1,16%. Он 183] приписал линию, наблюдаемую при значении массы 64 (по крайней мере ее большую часть) примеси, так как интенсивность этой линии, казалось, уменьшилась в течение эксперимента. Джир и Зееман [741] установили, что. [c.72]

    Применение фотографической регистрации целесообразно при работе с ионами высоких энергий. Для определенных экспозиций имеется минимум энергии, различный для каждой массы, ниже которого не получается проявленное изображение. Бейнбридж [ 109] установил при изучении ионов щелочных металлов, что это напряжение изменяется от 460 эв для лития до 920 в для цезия, если использовать пластинки для рентгеноскопии. Однако если использовать пластинки Шумана, имеющие минимальную защитную пленку желатина, то порог напряжения падает до очень малой величины. Чувствительность обнаружения возрастает с увеличением энергии бомбардирующих ионов и максимальна для легких ионов (при данной энергии бомбардировки). Размер зерна эмульсии устанавливает предел достижимой разрешающей способности в приборе с определенной дисперсией масс, использующем фотографическую регистрацию. [c.205]

    Применение радиоактивного излучения основано на его большой проникающей способности и на возможгюсти его легкого обнаружения с помощью специальных приборов или фотографической пластинки, чернеющей после проявления в тех местах, где на эмульсию попали радиоактивные лучи. Следовательно, радиоактивность является как бы меткой , позволяющей отличить нерадиоактивные изотопы от радиоактивных. Этим и обусловлено название последних — меченые атомы. [c.67]

    Фабричные фотографические эмульсии состоят из микрокристаллов галогенидов серебра, взвешенных в желатине или, реже, в поливиниловом спирте. Их приготовляют вливанием раствора азотнокислого серебра, или аммиачного раствора азотнокислого серебра, в раствор галогенида щелочного металла. Способ смешения растворов зависит от типа изготовляемой эмульсии [6—8]. Фотографические свойства эмульсий обычно выражают в виде характеристических кривых и кривых отклонений от закона взаи-мозаместимости, получаемых стандартными сенситометрическими методами [1]. Эмульс онному слою сообщают ряд экспозиций (обычно через калиброванный ступенчатый клин), возрастающих в геометрической прогрессии, после чего пластинки обрабатывают в стандартных условиях и сушат. Оптические плотности проявленных участков (плотностью называется величина lg где Т — [c.409]

    Подкисленная перекись водорода, содержащая растворимые бромиды, оказывает восстанавливающее действие (в фотографическом смысле этого слова) на серебряное изображение проявленной пластинки или отпечатка, а также размягчает и растворяет желатину на тех участках, где имеется изображение. Этот эффект используется для получения желатинового рельефа, который может найти применение для механического воспроизведения. Упомянутый процесс описан Апдресеном [46], Люпно-Крамером [47] и Ланге [48]. Сама перекись водорода большим применением как общий фотовосстановитель не пользуется для этой цели широко используется пероксодисульфат аммония. [c.491]

    В. Рентген [1] в декабре 1895 г. отметил, что фотографические пластинки чувствительны к Х-лучам . А. Беккерель [2] в 1896 г. обнаружил, что фотографическая пластинка, находившаяся в темноте близ калийураннлсульфата, чернеет при проявлении. [c.5]


Смотреть страницы где упоминается термин Пластинки фотографические проявление: [c.172]    [c.45]    [c.297]    [c.86]    [c.204]    [c.144]    [c.162]    [c.219]    [c.135]    [c.87]    [c.184]    [c.186]   
Техника физико-химического исследования Издание 3 (1954) -- [ c.249 ]




ПОИСК







© 2025 chem21.info Реклама на сайте