Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод дисперсии вращения плоскости поляризации

    Спектрополяриметрия — инструментальный метод, основанный на измерении зависимости угла вращения плоскости поляризации от длины волн света, проходящего через поляриметр. Измерения осуществляют на спектрополяриметрах. См. Дисперсия оптического вращения. [c.278]

    В методах, описанных в двух предыдущих главах, используется главным образом поглощение электромагнитного излучения, но при строгом рассмотрении этого явления следует учитывать также отражение, преломление света и вращение плоскости поляризации (относительно направления распространения) световых лучей, которые играют косвенную, но часто существенную роль (например, в дисперсии излучения). Кроме того, некоторые аналитические методы полностью основаны на этих явлениях. [c.219]


    Плавные кривые дисперсии оптического вращения пе могут столь же эффективно использоваться при решении структурных проблем, как кривые эффекта Коттона, ввиду отсутствия у них характерных и специфических особенностей. Их главное значение состоит, по-видимому, в обобщении и уточнении общих методов, разработанных для вращения плоскости поляризации монохроматического излучения (см. стр. 446). Если не считать тех исследований, в которых плавные кривые применялись для определения конформации полипептидов [43], использование этих кривых носит чисто эмпирический характер ниже при обсуждении вопросов, связанных с практическим применением метода оптического вращения, приводятся соответствующие примеры. [c.433]

    СПЕКТРОПОЛЯРИМЕТРИЯ — физико-химич. метод исследования, основанный на изучении зависимости между длиной волны и величиной вращения плоскости поляризации света оптически активными веществами. Графически такого рода зависимость изображается кривыми дисперсии оптич. вращения (ДВ). Последние могут быть нормальными (монотонно поднимающимися или опускающимися, соединение 1, кривая 1) и аномальными — с максимумами, минимумами или точками перегиба (соединения 2 и 3, кривые [c.497]

    Метод дисперсии оптического вращения позволяет по зависимости величины вращения плоскости поляризации света, проходящего через образец, от длины волны определять степень а спиральности и содержание -структуры в белках. [c.14]

    Кажется парадоксальным рассматривать метод измерения дисперсии оптического вращения — изменение оптического вращения с изменением длины ВОЛНЫ падающего света (сокращенно ДОВ) — как один из новейших методов исследования полимеров, поскольку его история насчитывает более полутораста лет и начинается с тех пор, когда Био (1812 г.) обнаружил способность кварца вращать плоскость поляризации света, а также явление дисперсии оптического вращения. Однако со времени изобретения бунзенов-ской горелки в 1866 г. почти монохроматическое излучение натриевого пламени становится основным стандартом, и большая часть измерений величин оптического вращения была проведена с использованием этого источника света [2]. Эффект экономии времени при проведении измерений только при одной длине волны падающего света вполне компенсируется недостатком информации о структуре молекулы, которую можно получить только с помощью метода ДОВ. В начале 1950-х годов метод ДОВ переживал период возрождения как в области теории, так и в области экспериментальной техники этому способствовало появление современных спектрополяриметров (впервые появившихся в 1953 г.). Химики-органики широко используют эффект Коттона (раздел Б-5) при установлении абсолютной конфигурации или конформации органических соединений [3]. Исключительную важность имеет также исследование при помощи этого метода конформаций белков и полипептидов. Открытие собственной оптической активности а-спирали (раздел Г-1) побудило интенсивно исследовать области применения, а также недостатки метода ДОВ в настоящее время этот метод, по-видимому, начинает устаревать. [c.90]


    Другим важным свойством электромагнитной волны является ее поляризация. Неполяризованные электромагнитные волны имеют случайное направление своих электрических и магнитных составляющих относительно оси распространения волны. На примере рис. 18-3 это означает, что электрические и магнитные составляющие (поля), которые всегда остаются ортогональными друг к другу, имеют переменную и непредсказуемую ориентацию в плоскости, перпендикулярной направлению распространения волны. Если, однако, все осцилляции электрического (или магнитного) поля находятся в какой-либо одной плоскости (например, плоскость Ех или Мх), то говорят, что волна плоско поляризована, как это и показано на рис. 18-3. Если эта плоскость вращается с постоянной скоростью вокруг оси распространения волны, то говорят, что волна поляризована по кругу. Хотя мы не будем далее использовать эти представления, следует заметить, что эти явления положены в основу нескольких важных спектрохимических методов— поляриметрии, дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД). Эти методы зависят от способности некоторых оптически активных химических частиц изменять направление поляризации электромагнитной волны и иСпользуются в анализе для идентификации этого особого класса веществ. [c.610]

    Весьма вероятно, что удастся обобщить и систематизировать из-м ерения абсорбции инфракрасной части спектра и получить быстрый метод качественного анализа углеводородных смесей. След я числу классов углеводородов, представленных в смеси, числу, которое ниже Ш1И равно пяти (парафиновые, олефиновые, циклические насыщенные, гидроароматические и ароматические), можно установить равное число уравнений, связывающих концентрации различных, представленных в смеси классов углеводородов, зная уравнение, выведенное из измерений 1) дисперсии рефракции, 2) магнитного вращения плоскости поляризации, 3) критической температурьг растворимости в анилине, 4) критической температуры растворимости в беязило-Бом спирте, а также имея в виду равенство — [c.110]

    Взаимодейстнне квантов света с атомами и функциональными группами вещества зависит от энергии квантов, поэтому при разных длинах волн X светового излучения меняется угол вращения плоскости поляризации раствором вещества. Это явление называют дисперсией оптического вращения а и изображают в виде кривых дисперсии оптического вращения (рис. 33.7). Если в соединении содержатся оптически активные группы, то на кривых оптического вращения возникают максимум и минимум, которые называют эффектом Коттона. Вид эффекта Коттона характеризует структуру вещества. Для измерения дисперсии оптического вращения используют спектрополяримет-ры, представляющие собой поляриметры, к которым подключен спектрофотометр или другой источник монохроматического излучения. Метод анализа с применением спектрополяриметров называют спектрополяриметрическим. [c.804]

    Исследования влияния углеводородов на конформационное состояние макромолекул глобулярных белков проводились методами оптического вращения и его дисперсии, вискозиметрически, спектрофотометрически и по изучению кинетических параметров ферментативной активности, Вращение плоскости поляризации чрезвычайно чувствительно к изменению конформации белковых молекул. Правда, между оптической активностью и структурой белка нет простой и ясной зависимости, но значение оптической активности как характеристики степени конформационного изменения белков общеизвестно и играет большую роль при изучении процессов денатурации. [c.29]

    Спектрополяриметрический метод основан на изучении физического свойства, наиболее характерного для каждого асимметричного вещества, а именно его оптической активности. Раньше уже указывалось, что направление вращения плоскости поляризации света само по себе не определяет принадлежности соединения к О- или -ряду. Если два сходных по структуре вещества имеют не только одинаковые по знаку, но и близкие по величине [а]о, это также не означает, что они обладают одинаковым пространственным строением. Идентичность конфигураций этих веществ может быть установлена лишь путем измерения их оптической активности на протяжении всей видимой и доступной ультрафиолетовой частей спектра и сравнения получающихся при этом кривых зависимости величины ращения от длины волны (так называемых кривых враш,атель-ной дисперсии). Например, полученная из природного антибиотика актидиона (см. том II) ( + )-4-метилгексанон-2-карбоно-вая-6 кислота имеет примерно такое же значение [а ]о, как ( + )-4-метилгексанон-2, для которого установлена абсолютная конфигурация III  [c.598]

    В результате ряда упрощений и усовершенствований был предложен метод п-й-М определения структурно-группового состава по коэффициенту преломления, удельному и молекулярному весам [62]. Кроме того, предложен ряд других методов, основанных на определении элементарного состава, молекулярного веса и удельной дисперсии [63] метод Липкина [64] для фракций нафтено-парафино- вых и ароматических — по плотности и молекулярному весу метод Фёр и Фенске, требующий определения молекулярного веса, плотности и магнитного вращения плоскости поляризации. [c.36]


    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — условное название большого числа колич. методов анализа, основанных на измерении различных физич. свойств соединений илп простых веществ с пспользованием соответствующих приборов. Измеряют плотность, поверхностное натяжение, вязкость, поглощение лучистой энергип (рентгеновских лучей, ультрафиолетового, видимого, инфракрасного излучений и микроволн), помутнение, излучение радиации (вследствие возбуждения), комбинационное рассеяние света, вращение плоскости поляризации света, показатель преломления, дисперсию, флуоресценцию и фосфоресценцию, дифракцию рентгеновских лучей п электронов, ядерный и электронный магнитный резонанс, полуэлектродпые потенциалы, потенциалы разложения, электрич. проводимость, диэлектрич. постоянную, магнитную восприимчивость, темп-ру фазовых превращений (темп-ра кипения, плавления и т. п.), теплоты реакцпп (горения, нейтрализации и т. д.), теплопроводность и звукопроводность (газов), радиоактивность и другпе фпзпч. свойства. В настоящее время все чаще фпзико-химич. методы анализа называют (более правильно) инструментальными методами анализа. [c.214]

    В связи с возрождающимся интересом к методу вращения плоскости поляризации вообще и к методу оптической вращательной дисперсии (зависимость оптического вращения от длины волны) в частности стало доступным большое число приборов (поляриметров) для измерения вращения плоскости поляризованного света различными веществами. Имеются большие различия в типах приборов (визуальные, фотоэлектрические, фотографические и т. д.), в принципах их работы (прямое снятие показаний, эффект Фарадея, использование абсорбции и т. д.), в универсальности (для одной длины волны, для серии длин волн, сиектроноляри-метры и т. п.), в точности измерений и в стоимости. В ряде статей [8, 14, 17а] подробно описаны многие из этих приборов, в частности их работа, достоинства и недостатки. [c.41]

    Оптическая активность впервые была обнаружена как вращение плоскости поляризации поляризованного света. Этот аспект оптической активности называется дисперсией оптического вращения. Затем оказалось, что оптически активные вещества по-разному поглощают поляризованный по кругу свет в зависимости от того, поляризован ли он вправо или влево. Этот круговой дихроизм заметен, конечно, только вблизи полос поглощения он проявляется в смещении этих полос (так называемый эффект Коттона). На явлениях дисперсии оптического вращения и кругового дихроизма основаны два ценных метода анализа, применяемые в органической химии. Эти методы позволяют проводить непрерывный количественный анализ процессов распада или синтеза органических веществ кроме того, они очень чувствительны. Оба явления, различаясь внешне, едины в своей сути и представляют собой лишь разные стороны феномена оптической активности. Они обусловлены диссимметричностью молекул стереоизомеров или энантиоморф-ных кристаллов. От одной стороны можно перейти к другой с помощью квантовомеханических уравнений Кронига — Крамера [17, 39]. [c.287]

    Интенсивно развиваются методы снятия спектров магнитной дисперсии оптического вращения (МДОВ) и особенно магнитного кругового дихроизма (МКД). В основе этих методов лежит эффект Фарадея любое прозрачное вещество, помещенное в магнитное поле, вращает плоскость поляризации при прохождении через [c.43]

    Спектрополяриметрия основана на использовании дисперсии оптич. вращения (ДОВ) —изменения оптич. вращения с длиной волны (см. Оптически активные полимеры). В этом методе на образец падает линейно (плоско) поляризованный свет, к-рый можно представить как сумму компонент с левой и правой круговой поляризацией. Если эти компоненты распространяются в исследуемом веществе с различными скоростями, при их наложении после прохождения образца возникает разность фаз, что приводит к повороту плоскости поляризации исходного излучения. В том случае, если лучи поглощаются средой различным образом, возникает дополнительная эллиптич. поляризация света. [c.236]

    Дисперсия оптического вращения. Доля спирализованных участков в молекуле белка — важный параметр его структурной характеристики. В парамиозине, например, более 90% аминокислотных остатков вовлечены в спиральную структуру, тогда как в Р-лактоглобулине участки со структурой а-спирали, вероятно, вообще отсутствуют. Большинство белковых молекул содержит спирализованные участки различной длины, чередующиеся с элементами структуры типа беспорядочно свернутого (статистического) клубка. Долю спирализованных участков можно определить несколькими методами. Чаще всего пользуются методом, оспованным на изучении дисперсии оптического вращения модельных полипептидов. На фиг. 35 схематически показана зависимость оптического вращения синтетического полипептида поли-Ь-глутамата от длины волны при pH 7 и 4. Такое изменение оптического вращения носит название дисперсии оптического вращения. Легко видеть, что кривые дисперсии оптического вращения для двух значений pH резко отличаются одна от другой как в области менеду 250 и 190 ммк, так и в области между 350 и 700 ммк. Эти различия коррелируют с изменениями в структуре полипептида если при pH 4 структура поли-Ь-глутамата является полностью спиральной, то при pH 7 полипептид имеет структуру беспорядочно свернутого клубка. Поскольку спираль представляет собой в основном асимметрическую структуру, вполне естественно, что наличие спирализованных участков усиливает способность полипептидов вращать плоскость поляризации (обусловленную присутствием в цепи остатков асимметрических аминокислот). Важный, но еще не решенный вопрос состоит в том, можно ли, исходя из данных по дисперсии оптического вращения, количественно оценивать долю спиральных структур. В принципе такие оценки можно делать на основе данных по оптическому вращению, полученных в двух разных областях спектра. Для более длинноволновой области Моффит и Янг предложили следующее эмпирическое выражение, описываю- [c.101]

    Исследование пространственных, конформационных состояний. иолгипептидных и белковых молекул проводится современными физическими и физико-химическими методами. Вполне понятно, что ценность любого из этих методов будет тем большей, чем точ1нее он позволяет определять пространственное строение белка-фермента, непосредственно связанное с выполняемой последним биологической функцией. Поскольку все ферменты являются асимметрическими системами, растворы которых вращают плоскость поляризации света, то здесь широко используют оптические методы. К ним относятся дисперсия оптического вращения и круговой дихроизм, т. е. изменение оптических характеристик какого-либо соединения в зависимости от длины волны облучающего света. Для многих ферментов, особенно содержащих металлы, можно применить метод магнитной дисперсии, когда оптическая активность (новая, отличная от естественной) индуцируется сильным магнитным полем (это явление известно под названием эффекта Фарадея). При изменении пространственного строения белков-ферментов в растворе меняются и их оптические характеристики — кривые оптической дисперсии и кругового дихроизма, и на основании этого можно судить о характере происшедших изменений. Широкую популярность в химии ферментов завоевали различные спектральные методы, в частности метод ядерно-магнитного резонанса, регистрирующий поведение ядер некоторых атомов в исследуемом пептиде или белке при наложении сильного внешнего магнитного поля, а также методы инфракрасной и ультрафиолетовой спектроскопии и т. п. [c.46]

    Дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД). Методы ДОВ и КД представляют собой два различных способа изучения одного и того же явления — взаимодействия монохроматического линейно поляризованного света с оптически активными молекулами. При использовании метода ДОВ изучается зависимость величины угла поворота плоскости поляризации световой волны поляризованного излучения в диапазоне от 180 до 240 нм., В основе метода КД лежит различная способность оптически активных молекул поглощать право- и левополяризованный свет. Зависимость параметра эллиптичности (пропорционального разности между поглощением образцом право- и лёвополяризованного света )от длины волны называется спектром КД. Его, как правило, также получают в диапазоне длин волн от 180 до 240 нм. [c.122]


Смотреть страницы где упоминается термин Метод дисперсии вращения плоскости поляризации: [c.29]    [c.35]    [c.67]    [c.155]    [c.35]    [c.236]   
Терпеноиды (1963) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Вращение плоскости поляризации

Поляризация плоскости поляризации



© 2025 chem21.info Реклама на сайте