Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение дисперсия

    Спектрограф КС-55. Прибор КС-55 снабжен сменными кварцевыми и стеклянными призмами и объективами. Это позволяет фотографировать спектры излучения и поглощения, начиная от 200 до 1000 нм. Замена оптических деталей производится быстро и не требует последующей юстировки прибора. Дисперсия прибора приведена в табл. 3. [c.38]

    Значительным преимуществом фотографического метода является его документальность, так как фотографическая пластинка со спектром может быть сохранена. Кроме того метод отличается высокой абсолютной чувствительностью и достаточной при определении низких концентраций воспроизводимостью. Фотографическая эмульсия фотопластинки интегрирует эмиссию источника излучения и усредняет ее нестабильность. Для получения, и фотографирования спектров в широком интервале длин волн желательно применять полихроматоры большой дисперсии, что позволяет легче отделить исследуемые спектра .ь- [c.25]


    Действие призмы как диспергирующего элемента спектрального прибора основано на зависимости показателя преломления материала призмы от длины волны излучения. Угловая дисперсия е двух лучей различной длины волны к после прохождения ими призмы определяется выражением  [c.67]

    Спектрограф ИСП-51. Рис. 25. Участок спектра излучения, снятый ТрехпризменныЙ стеклян-на спектрографах с различной дисперсией ный спектрограф ИСП-51 [c.40]

    В настоящее время эти проблемы решены различными способами. Повышены интенсивность источников излучения и чувствительность детекторов. По существу, эти части установок для кругового дихроизма могут быть одинаковыми с таковыми в спектро-поляриметрах для измерений дисперсии оптического вращения. В связи с тем, что неизвестно такое дихроичное вещество, для которого один из коэффициентов поглощения е или бг был бы очень мал, принципиальным является узел прибора для формирования лучей с круговой поляризацией. Для этого используется так называемая четвертьволновая пластинка. [c.197]

    Атом представляет собой резонансную систему. При совпадении частоты первичной волны со с собственной частотой одного из электронов атома со = возникает аномальная дисперсия из-за вклада, вносимого резонансным рассеянием. В этом случае длина рассеяния атома fa зависит от частоты <в или длины волны А, первичного излучения. Вариация атомной амплитуды А/ в зависимости от длины волпы, экстраполированная в каждой точке на угол рассеяния д = О, для атома Са показана на рис. 111.3. В области аномальной дисперсии наблюдается значительный дефицит атомного рассеяния, достигающий для редкоземельных металлов 15 электронных единиц [3]. [c.78]

    Из уравнения Релея (УП1.1) и уравнения (УП1.4) можно сделать следуюш,ие выводы. Рассеяние света тем значительнее, чем крупнее частицы (следует, однако, иметь в виду, что теория применима для случая, когда размер частиц не превышает длины волны). На интенсивность рассеяния света огромное влияние оказывает его длина волны. (Из УП1.1) и (УИ1.4) следует, что преимущественно рассеивается коротковолновое излучение (обращаем внимание X в знаменателе). Поэтому при освещении белым светом, который можно рассматривать как смесь лучей различной длины волны, рассеянный свет богаче коротковолновым излучением, а прошедший — длинноволновым. Интенсивность рассеянного света находится в прямой зависимости от разности показателей преломления дисперсной фазы и среды. При равенстве показателей преломления система практически не рассеивает свет. Интересно, что если при этом среда и дисперсная фаза отличаются показателями оптической дисперсии, то системы окрашены в яркие цвета (эффект Христиансена). [c.159]


    Му Происходит синхронно с изменением Иными словами, в момент резонанса вдоль оси у наводится максимум намагниченности, т. е. ток в катушке приемника в этих условиях соответствует ядерному поглощению V. Изменение намагниченности вдоль оси у со сдвигом фазы относительно на 90 (или вдоль оси л в фазе с Н ) соответствует величине дисперсии и. В момент резонанса, т. е. при о = эта компонента намагниченности равна нулю. Для регистрации поглощения и в случае (Оо (О в приемник подают опорный сигнал, составляющий небольшую часть излучения генератора. При использовании фазочувствительного приемника происходит усиление опорного сигнала только за счет сигнала поглощения. [c.34]

    Диспергирующие системы. Использование призмы в качестве диспергирующей системы основано на зависимости показателя преломления от длины волны излучения. Угловая дисперсия йе двух лучей различной длины волны после прохождения ими призмы определяется следующим выражением  [c.190]

    По теории дисперсии величина 8 = йп/йХ особенно сильно изменяется в коротковолновой части спектра (в области вблизи поглощения излучения материалом призмы). На этом участке даваемый призмой спектр растянут наиболее сильно. В коротковолновой части видимой области спектра стеклянная призма дает более растянутый спектр, чем кварцевая призма тех же размеров, так как дисперсия стекла ввиду близости начинающегося поглощения изменяется намного сильнее, чем 8 для кварца. [c.190]

    Основной частью монохроматора в этих приборах является диспергирующая призма, которая разлагает сплошное излучение в спектр, в результате чего через выходную щель монохроматора, осуществляющую дополнительную монохроматизацию, проходит излучение той или иной монохроматичности в зависимости от дисперсии призмы и рабочей ширины щели в данном спектральном интервале. [c.257]

    Для проведения качественного анализа необходимы таблицы спектральных линий, атласы спектральных линий и спектропроектор. Атласы спектральных линий бывают двух типов атласы дуговых и искровых спектров железа и атласы спектральных линий железа и других элементов. Дуговые и искровые спектры железа применяют в качестве вторичного эталона длин волн. Первичным эталоном длин волн служит оранжево-красная линия криптона Кг 587,09 нм. В одном метре укладывается 1 650 763,73 длины волны в вакууме оранжево-красного излучения криптоновой лампы. Атласы спектральных линий выпускают применительно к каждому типу спектрографа. Чаще других применяют кварцевые спектрографы средней дисперсии ИСП-28, ИСП-30. Основу атласов составляет увеличенное в двадцать раз изображение спектра железа, что соответствует увеличению выпускаемых промышленностью спектропроекторов ПС-18 нли ДСП-1. В атласах дуговых и искровых спектров железа встык сфотографированы два спектра железа при разных выдержках. При большой экспозиции в спектре появляются малоинтенсивные линии, а при малых— отчетливо видны те линии, которые перекрываются в спектрах, снятых при больших выдержках. Увеличенное в двадцать раз изображение спектра железа имеет длину более двух с половиной метров. Поэтому его разбивают на отдельные участки, которые наносят на планшеты, в правом верхнем углу которых указан порядковый номер. Против каждой линии в спектре железа имеется стрелка с указанием длины волны. [c.666]

    Оптика в широком смысле слова есть наука о взаимодействии электромагнитного поля любых частот с веществом. Основные явления, возникающие при этом, следующие отражение, преломление и поглощение, дисперсия, обратное излучение, фотоэлектрический эффект и др. В связи с таким определением оптических свойств [c.395]

    В полуклассической теории дисперсии твердое тело рассматривают как совокупность независимых нейтральных атомов, фиксированных в пространстве [3]. Под влиянием падающего на систему атомов излучения атом может перейти из состояния п с энергией е в состояние, когда частота излучения удовлетворяет условию Йсо = Йсо = е,- — е . [c.407]

    Выходящее из образца излучение разлагают в спектр (т. с. получают зависимость интенсивности I от энергии Е) с помощью рентгеновских спектрометров с волновой (ВДС) или энергетич. (ЭДС) дисперсией. Действие ВДС-спектро-метров (рис. 1) основано на условии Вульфа-Брэгга  [c.443]

    Современные процессы переработки нефти основываются на исследовании углеводородного состава нефти и нефтепродуктов. В настоящее время наиболее надежным методом исследования химического состава является изучение колебательных спектров молекул. Основные принципы этого метода известны уже давно. Еще в 1800 г. Гершелем 122] было открыто излз ение, лежащее за длинноволновым пределом человеческого зревия. Ранние исследования были весьма ограничены вследствие применения приборов с различной дисперсией и различных способов регистрации излучения Б инфракрасной области. Однако уже в первых работах было замечено, чтс прозрачность так называемых бесцветных веществ зависит от частоты излучения. Иными словами, если бы глаз был чувствителен к энергии, излучаемой в инфракрасной области спектра, то эти вещества обладали бы цветом. [c.312]


    Рис, 25, Уч 1сток спектра излучения, снятый Трехпризменный стеклян-иа сиектро рафах с различной дисперсией цый спектрограф ИСП-51 [c.40]

    Метод определения содержания метил-ш/ ет-бутилового эфира (МТБЭ). Метод основан на измерении величины поглощения инфракрасного излучения в максимуме полосы поглощения 1090 см , характеризующей валентные колебания группы С— О—С в молекуле метил-ш/)ет-бутилового эфира. Испытание проводится на ИК-спектрофотометре средней или высокой дисперсии, работающем в диапазоне, имеющем разрешение не ниже I см и воспроизводимосгь величины пропускания в ИК-спектре 1% с использованием жидкостных кювет с окнами из КВг или N301. При подготовке к испытаниям готовят серию градуировочных образцов (минимально 7) неэтилированного бензина А-76 с 1 15% мае. МТБЭ. Затем компенсационным методом регистрируют ИК-спектры градуировочных растворов. При этом толщина кювет подбирается такая, чтобы оптическая [c.418]

    Каждый спектральный прибор характеризуется той областью, в которой он может быть использован. Наиболее важные характеристики спектрального прибора линейная дисперсия, разрешающая сила и светосила. Линейная дисперсия определяется как отношение 116Х, где с1/ —расстояние в спектре между центрами монохроматических изображений щели, отстоящих на интервал (1Х. Разрешающая способность / (или разрешающая сила) характеризуется минимальным спектральным интервалом между близкими монохроматическими линиями Я.1 и 2, которые данный спектральный прибор может разрешить. Светосила прибора характеризуется величиной относительного отверстия дЦ чем больше д/ , тем большее количество излучения может войти в спектральный прибор. [c.9]

    Простую поляриметрию заменили методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), которые позволили изучать более полно оптические характеристики оптически активных веществ как функции длины волны излучения. Современные методики ДОВ и КД позволяют определять абсолютную конфигурацию молекул (правда, на полузмпирической основе), химическое строение, конформации и некоторые спектральные характеристики молекул. [c.167]

    Знак вращения зависит от длины волны используемого излучения. Более полная информация о веществе может быть получена при определении дисперсии магитного оптического вращения (ДМОВ), т. е. при изучении функции а=а(Х), или a=a(v). Однако можно изучать поглощение света луча с правой и левой круговой поляризацией или зависимость Ае(у)=е/(у) — [c.250]

    Спектрограф КС-55. Спектрограф КС-55 предназначен для сьемки спектров в области от 200 до 1000 нм на фотографическую пластинку. Прибор снабжен сменными кварцевыми и стеклянными призмами и объективами. Это позволяет фотографировать спектры излучения и поглощения в видимой и в ультрафиолетовой части его. Прибор обладает высокой обратной дисперсией. Величина обратной дисперсии при разных длинах волн для кварцевой и стеклянной оптики приведена в табл. 3. [c.50]

    В призменных приборах возможно двукратное использование призм.. Оно состоит в том, что позади призмы помешают зеркало, отражающее прошедшее через призму излучение таким образом, что оно может еще раз пройти, через эту же призму (монохроматор по Литтрову). При двукратном прохождении излучения через призму длина спектра (дисперсия) удваивается. [c.190]

    В качестве диспергирующих средств используют призмы или дифракционные решетки (58]. Тенденция использования приборов с дифракционными решетками особенно заметна в инфракрасной спектроскопии, что объясняется достигаемыми при этом высокой разрешающей способностью и малой спектральной шириной щели в длинноволновой области. Призменные инфракрасные спектрометры конструируют чаще всего по схеме Литтрова [551 (гл. 5.2.1.3). Ввиду значительной зависимости угловой дисперсии от длины волны область наиболее выгодного использования призм расположена вблизи начинающегося поглощения излучения материалом призмы (табл. 5.19). В современных призменных спектрометрах это достигается автоматической заменой призм. [c.236]

    Взаимодейстнне квантов света с атомами и функциональными группами вещества зависит от энергии квантов, поэтому при разных длинах волн X светового излучения меняется угол вращения плоскости поляризации раствором вещества. Это явление называют дисперсией оптического вращения а и изображают в виде кривых дисперсии оптического вращения (рис. 33.7). Если в соединении содержатся оптически активные группы, то на кривых оптического вращения возникают максимум и минимум, которые называют эффектом Коттона. Вид эффекта Коттона характеризует структуру вещества. Для измерения дисперсии оптического вращения используют спектрополяримет-ры, представляющие собой поляриметры, к которым подключен спектрофотометр или другой источник монохроматического излучения. Метод анализа с применением спектрополяриметров называют спектрополяриметрическим. [c.804]

    Сравнивая выражения (722) и (723), видим, что классическая и квантовая формулы дисперсии приводят к идентичной форме. Однако вместо частот со, воображаемых осцилляторов классической теории в квантовую формулу входит реальная собственная частота света, которая может поглощаться (или испускаться) атомом. Вместо доли осцилляторов f в квантовой формуле стоит выражение (723а), которое можно вычислить, если известны волновые функции атома [3]. Кроме того, сила осциллятора просто связана с коэффициентом Эйнштейна для самопроизвольного излучения частоты to, , выражаемым в виде [c.408]

    Различают неск. оси. способов получения клееных Н.м. Широко распространен метод пропитки холста жидкими связующими (дисперсиями и р-рами бутадиен-акрилоии-тркльного каучука, полистирола, поливиинлацетата, поливинилового спирта, акриловых сополимеров шш др.). Методы пропитки разнообразны холст погружают в ванну со связующим пена связующего подается в зазор двух валов, через к-рый непрерывно проходит холст связующее распыляется на пов-сть холста спец. устройствами наносится печатанием с помощью гравированных валов, шаблонов (аналогично нанесению рисунка на ткань). После пропитки полотно подвергают сушке и термообработке горячим воздухом или ИК излучением в спец. камерах или на каландрах. [c.222]

    П. может быть осуществлена разл. способами, различающимися по агрегатному состоянию системы. Наиб, распространены блочная полимеризация мономера, полимеризация в растворе, П. в водных дисперсиях (эмульсионная или суспензионная полимеризация), П. газообразного мономера под действием ионизирующего излучения или на пов-сти твердых катализаторов (газофазная полимеризация), а также твердофазная полимеризация (П. твердого мономера под действием ионизир. излучения или света). Известна полимеризация на наполнителях. [c.637]

    Раднопоглошающие материалы. В радиопоглощающих материалах и конструкциях наряду с диэлектрич. и магн. потерями имеют место дисперсия, дифракция, интерференция и полное внутр. отражение радиоволн, вызывающие дополнит, ослабление энергии ЭМИ вследствие рэлеевского рассеяния, сложения волн в противофазе и др. Изделия из таких материалов поглощают потоки электромагн. энергии плотн. 0,1-8,0 Вт/см интервал рабочих т-р - 60 - 1300°С уровень отраженного излучения 0,001-5%. [c.170]

    Спектры регистрируют с помощью спектрографов и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия-для разделения спектральных линий с близкими длинами волн при анализе в-в с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракц. решетки (плоские, вогнутые, нарезные, голографич., профилированные), имеющие от неск. сотен до неск. тысяч штрихов на миллиметр, значительно реже-кварцевые или стеклянные призмы. [c.393]

    При интерпретации спектров НПВО следует иметь в виду, что интенсивности полос повышаются по мере увеличения длины волны, что обусловлено более глубоким проникновением в образец более длинноволнового излучения. Кроме того, искажения формы полос и их смещения м. б. обусловлены дисперсией показателя преломления. Часто используют методику получения спектров многократно нарушенного полного внутреннего отражения (МНПВО), причем число отражений м. б. 25 и более. Длина призмы, находящейся в контакте с исследуемым образцом может достигать более 500 мм при толщине до 2 мм. Угол падения излучения на кристалл можно варьировать, при этом меняется число отражений и соотв. изменяется интенсивность спектра МНПВО. Используя призму из материала (напр., германия) с высоким значегаем показателя преломления, при малом числе отражений можно получить хороший спектр МНПВО даже от резины с высоким содержанием сажи. Чем выше показатель преломления материала призмы, тем меньше глубина проникновения излучения в образец. [c.395]

    Получают Ф. гл. обр. радикальной полимеризацией (или сополимеризацией) мономеров в массе, суспензии или эмульсии в орг. или водной среде в присут. разл. инищ1аторов, реже - в газовой фазе под действием ионизирующего или УФ излучения. Выпускают Ф. в виде паст, порошков, гранул, суспензий и дисперсий в водной среде, реже - р-ров. Перерабатывают многие Ф. по обычной технологии (см. Полимерных материалов переработка)-, для политетрафторэтилена используют технологию порошковой металлургии или получения керамики. [c.206]

    А при 30 кВ. Эта величина тока значительно превышает минимальный ток (1—5-10 А), который обычно необходим для проведения удовлетворительного количественного рентгеновского анализа с кристалл-дифракционным спектрометром. Согласно рис. 2.1, а, работая с вольфрамовым катодом, можно производить рентгеновский микроанализ с минимальным размером зонда порядка 0,2 мкм (2000 А). Такой размер пятна значительно меньше диаметра области-возбуждения рентгеновского излучения в образце (1 мкм, см. гл. 3). Малый размер пучка такого порядка позволяет оператору легко получать электронные растровые изображения анализируемых областей без изменения рабочих условий. Пушка с катодом из ЬаВе дает дополнительные преимущества в режиме микроанализа, потому что она позволяет исследователю проводить надежный рентгеновский микроанализ с электронным зондом размером менее 0,1 мкм. Следует отметить, что в стандартном РЭМ размеры пучка составляют примерно 10 нм (100 А) (рис. 2.1,6). При этом ток зонда для катодов из У или ЬаВе составляет менее Ю °А и слишком мал для проведения рентгеновского анализа кристалл-дифракционным спектрометром. Однако это как раз тот диапазон значения токов, где возможно проведение рентгеновского анализа с дисперсией по энергии (см. гл. 5). [c.15]


Смотреть страницы где упоминается термин Излучение дисперсия: [c.307]    [c.107]    [c.16]    [c.93]    [c.198]    [c.39]    [c.16]    [c.41]    [c.56]    [c.62]    [c.139]    [c.156]    [c.7]    [c.10]    [c.11]    [c.66]   
Современная аналитическая химия (1977) -- [ c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение тонкой структуры спектральных линий в спектре излучения атомов на спектрографе с высокой дисперсией

Электромагнитное излучение дисперсия



© 2025 chem21.info Реклама на сайте