Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосом идентификация

Рис. 18.15. Для картирования генов после трансфекции необходима цитологическая идентификация перенесенного фрагмента хромосомы в клетках, отобранных по активности исследуемых генов. В различных клеточных линиях могут находиться фрагменты разной длины. Рис. 18.15. Для <a href="/info/100154">картирования генов</a> <a href="/info/1338478">после трансфекции</a> необходима цитологическая идентификация перенесенного <a href="/info/1356945">фрагмента хромосомы</a> в клетках, отобранных по активности исследуемых генов. В различных <a href="/info/200121">клеточных линиях</a> могут находиться фрагменты разной длины.

    Попытки излечить врожденные дефекты цветового зрения предпринимались часто, начиная с 1870 г. Из числа применявшихся способов лечения упомянем о нагревании глаз с помощью горячих компрессов, назначении массивных доз различных витаминов, облучении глаз красным и зеленым светом и о цветовой тренировке, основанной на идентификации предъявляемых окрашенных образцов, а также на назывании цветов. Сообщалось о некоторых случаях исцеления. Мы обсудим подобные сообщения ниже в связи с описанием тестов, служащих для проверки правильности цветовых восприятий. Но пока скажем, что достоверность исцеления не была подтверждена ни в одном случае. По-видимому, убедить глаза развить способность воспринимать цвет, если эта способность не была запрограммирована в хромосомах в момент зачатия, столь же трудно, как с помощью какого-либо подходящего лечения убедить собаку превратиться в кошку. Для коррекции недостатков зрения аномальных трихроматов предлагали носить окрашенные фильтры в виде защитных очков [355] однако другие исследователи показали, что такая коррекция невозможна [373, 710]. Поэтому на вопрос Можно ли излечить врожденные аномалии цветового зрения — следует категоричный отрицательный ответ. [c.101]

    Использование хромосомных вариантов для идентификации хромосом при нерасхождении. Гетероморфизм может использоваться для установления происхождения определенной хромосомы, т. е. для выяснения того, получена ли она от отца или от матери и где именно произошло нерасхождение - в первом или втором делении мейоза (рис. 5.7). В случае, изображенном на рис. 5.7, А, три-сомный ребенок имеет три различные 21-е хромосомы вариант рЫ- (а, заштрихован), нормальную ф, черная) и вариант рЬ—(с). Изучение родителей показало, что отец гомозиготен по а, а мать гетерозиготна по Ь и с. Отсюда мы сразу заключаем, что нерасхождение произошло в зародьпие-вом пути матери, так как ребенок несет две материнские и только одну отцовскую хромосомы. Кроме того, нерасхождение, очевидно, произошло в первом делении мейоза, потому что ребенок имеет обе материнские хромосомы. Если бы нерасхождение случилось во втором делении, ребенок получил бы или две хромосомы Ь, или две хромосомы с. Таким образом, нам удалось установить факт нерасхождения в первом мейотическом делении, происшедшем в яичнике матери. [c.151]

    Окрашивание. Наиболее простой способ окрашивания-красителем Гимза или 2%-ным ацетоор-сеином, или 2%-ным ацеткармином. Эти красители окрашивают хромосомы целиком, равномерно и интенсивно. Для некоторых диагностических целей (например, для выявления численных аномалий хромосом) этот метод вполне достаточен. Для получения более детальной картины структуры хромосом и идентификации отдельных хромосом или их сегментов используются различные способы дифференциального окрашивания. [c.43]


    Использование многих тысяч разбросанных по всему геному полиморфных маркеров позволило определять как порядок расположения локусов, так и расстояния между ними на каждой хромосоме. Карта сцепления полиморфных участков оказывается неоценимой при локализации генов различных заболеваний. Для идентификации таких генов можно использовать зонды, специфичные в отношении последовательностей, которые фланкируют данный ген. [c.459]

    Идентификация индивидуальной хромосомы, в которой находится исследуемый ген,-это только первый этап картирования. Основной задачей являются установление порядка генов и их точная локализация. В некоторых случаях метод анализа родословных позволяет расположить на генетической карте хромосомы три и более маркеров. Использование более эффективных методов генетики соматических клеток может дать более точную информацию. Существенную помощь в таких исследованиях оказывают хромосомные перестройки (см. гл. 21). Далее мы рассмотрим примеры использования делеций, транслокаций или дупликаций для картирования генов. [c.301]

    В конденсированном состоянии каждый домен хроматина представляет собой, вероятно, компактную глобулу, которая занимает в метафазной хромосоме четко определенное положение для каждого участка ДНК. При локализации определенных генов в метафазной хромосоме они всегда обнаруживаются в одном и том же ее участке. Регулярная организация метафазных хромосом подтверждается также тем, что окрашивание их различными красителями дает стандартную картину в виде чередующихся полос более и менее интенсивной окраски. Полученная при окрашивании характерная исчерченность является надежным тестом для идентификации отдельных хромосом. [c.248]

    Следовательно, морфологические особенности хромосомы обусловлены местоположением центромеры (первичной перетяжки), наличием вторичной перетяжки и присутствием спутника. Совокупность всех морфологических признаков (включая и число хромосом), по которым возможна идентификация данного хромосомного набора, называется кариотипом, а графическое изображение того или иного кариотипа — кариограммой, или идиограммой щс. А2). [c.81]

    Кроме разнообразия клеток по степени спирализации хромосом набора, наблюдается варьирование длин гомологов. Гомологичные хромосомы в одной и той же клетке различаются по длине одного или обоих плечей. Причем оба плеча одной хромосомы могут быть-значительно длиннее плечей другой, гомологичной ей, хромосомы. Или же у одного гомолога укорочено в большей степени одно плечо, а у второго — другое. В результате длина одной и той же хромосомы в клетках, одинаковых по степени спирализации, различна. Такая вариация линейных параметров создает основные трудности при идентификации хромосом. [c.198]

    При идентификации теломерной последовательности следует использовать два критерия. Во-первых, такая последовательность должна лежать на конце хромосомы (или, по крайней мере, на конце аутентичной линейной молекулы ДНК). Во-вторых, она должна придавать линейной молекуле стабильность. [c.353]

    Метод окрашивания и идентификация хромосом. Дальнейшие успехи в картировании связаны с появлением новых методов идентификации индивидуальных хромосом, основанных на их дифференциальном окрашивании. Благодаря этим методам можно идентифицировать не только целые хромосомы, но и отдельные их части. В гибридных культурах довольно часто возникают хромосомные разрывы и перестройки. Это создает предпосылки для подходящей селекции гибридных клонов, содержащих интересующие нас части хромосом. Именно так некоторые локусы были отнесены к определенным хромосомным сегментам (или группе соседних сегментов). [c.202]

    Вариабельность потери хромосом человека у клеточных гибридов мышь—человек облегчает картирование человеческих генов. Для картирования генов мыши используют клеточные гибриды мышь—хомячок. Если присутствие продукта изучаемого гена коррелирует с наличием какой-либо одной хромосомы в гибриде, то этот ген, скорее всего, локализован в этой хромосоме. Должны соблюдаться два условия. Во-первых, исследуемый признак, кодируемый хромосомами человека, должен четко (на клеточном уровне) отличаться от аналогичного признака мыши. Например, исследуемая линия клеток человека содержит мутантную лактатдегидрогеназу А (LDH-A). Этот фермент отличается от белка, кодируемого соответствующим мышиным геном. Эти две формы легко разделяются при гель-электрофорезе. Второе условие, необходимое для картирования,-возможность идентификации данной человеческой хромосомы, присутствующей в исследуемой клеточной линии. [c.297]

    Идентификация инверсии в хромосоме 10 требует особого опыта (рис. 2.50). [c.82]

    Для отбора нужных клонов гибридных соматических клеток применяют селективные среды. Для идентификации многих белков используют технику электрофореза, позволяющую различать гомологичные белки человека и мыши. Таким образом локализуют гены в определенных хромосомах. [c.261]

    Надежным методом идентификации клеток, в ряде случаев близким к абсолютному, является хромосомный анализ после обработки трипсином и окраски по Гимза (выявление О-полос). Выявляемые этим методом особенности окраски сегментов хромосом являются характерными для каждой пары хромосом и позволяют опытному цитогенетику обнаруживать даже минорные инверсии, делеции и транслокации. Многие линии сохраняют множественные маркерные хромосомы, которые легко идентифицируются этим методом и могут служить специфическими положительными маркерами клеток. [c.144]


    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]

Рис. 19.6. Идентификация клеток, несущих трансген в специфическом сайте, при помощи ПЦР. А. В результате неспецифического встраивания векторной ДНК один из праймеров (Р2) не сможет гибридизоваться с участком хромосомы, находящимся на определенном расстоянии от места отжига праймера Р1, и фрагмента нужного размера при амплификации не образуется. Р1 гибридизуется с уникальным участком (118) встроенной ДНК, отсутствующим в хромосомной ДНК клетки-реципиента. Б. В результате гомологичной рекомбинации между участками НВ1 и НВ2 встраиваемой ДНК, с одной стороны, и комплементарными участками хромосомы С81 и С82, с другой, образуются участки, с которыми могут гибридизоваться оба праймера, Р1 и Р2, и которые находятся на определенном расстоянии друг от друга. В ходе ПЦР-амплификации синтезируются фрагменты одного размера, которые можно идентифицировать при помощи гель-электрофореза. Если ПЦР-продукт нужной длины образовался, значит трансген (ТО), находящийся между гомологичными участками (НВ1 и НВ2), встроился в определенный сайт хромосомы. Рис. 19.6. Идентификация клеток, несущих трансген в <a href="/info/33360">специфическом сайте</a>, при помощи ПЦР. А. В результате неспецифического встраивания векторной ДНК один из праймеров (Р2) не сможет гибридизоваться с участком хромосомы, находящимся на <a href="/info/487924">определенном расстоянии</a> от места отжига праймера Р1, и фрагмента нужного размера при амплификации не образуется. Р1 гибридизуется с уникальным участком (118) встроенной ДНК, отсутствующим в хромосомной ДНК <a href="/info/1894922">клетки-реципиента</a>. Б. В результате <a href="/info/1911857">гомологичной рекомбинации между</a> участками НВ1 и НВ2 встраиваемой ДНК, с одной стороны, и комплементарными участками хромосомы С81 и С82, с другой, образуются участки, с которыми могут гибридизоваться оба праймера, Р1 и Р2, и <a href="/info/1597898">которые находятся</a> на <a href="/info/487924">определенном расстоянии</a> друг от друга. В ходе ПЦР-амплификации синтезируются фрагменты одного размера, которые можно идентифицировать при <a href="/info/213921">помощи гель</a>-электрофореза. Если ПЦР-продукт нужной длины образовался, значит трансген (ТО), находящийся <a href="/info/168844">между гомологичными</a> участками (НВ1 и НВ2), встроился в <a href="/info/1409730">определенный сайт</a> хромосомы.
    Карты сцепления хромосом человека постоянно обновляются по мере идентификации дополнительных полиморфных локусов. С увеличением числа локусов повышается разрешение карты и уменьшается расстояние между локусами. К 1994 г. были определены генотипы членов СЕРН-семей примерно по 6000 полиморфным маркерам и с помощью мультилокусного картирования установлено положение примерно 1000 локусов по всему геному человека со средним расстоянием между локусами около 4 сМ. Задача широкомасштабных проектов картирования состоит в том, чтобы, используя дополнительные полиморфные маркеры, построить карту каждой хромосомы с расстоянием между локусами 1-2 сМ. [c.460]

    Прогулка по хромосоме ( hromosome walking) Метод идентификации нуклеотидных последовательностей, фланкирующих известные гены, для которых имеются олигонуклеотидные зонды. Фланкирующие последовательности используются затем в качестве зондов для идентификации прилегающих к ним последовательностей, и т,д. [c.557]

    Связь между менделевскими генами и хромосомами клетки была твердо доказана Бриджесом в 1916 году (гл. 3). Ему удалось установить, что все гены имеют некоторые общие свойства. Во-первых, они способны создавать собственные копии (самореплицироваться) во время удвоения хромосом в период, предшествующий мейозу. Во-вторых, в результате мутаций гены могут переходить в различные аллельные формы, что также предполагает способность к саморепликации. Редкость мутаций указывает на то, что гены представляют собой очень стабильные структуры, способные к точной дупликации. В-третьих, гены различными способами оказывают влияние на фенотип. Проявление альтернативных признаков, как впервые заметил Мендель (длинный или короткий стебель, гладкие или морщинистые семена и т. п.), служит основным критерием идентификации генов при наблюдениях над расщеплением аллелей в потомстве различающихся по данному признаку родителей. Устойчивая передача признаков из поколения в поколение, нарушаемая лишь мутациями, ставит перед нами вопросы как определяются такие признаки Что представляет собой образующее ген вещество, способное к саморепликации, мутациям и фенотипическому проявлению  [c.88]

    Набор из 21 линии дителосомиков (ДТ) применяют для идентификации унивалентной хромосомы у моносомиков и для замещения хромосом. С другой стороны, телоцентрические хромосомы используют также для локализации (картирования) генов в пределах группы сцепления (отдельной хромосомы). Они служат удобной моделью для цитологического маркирования нужных хромосом благодаря их отчетливому морфологическому отличию как в митозе, так и в мейозе. [c.93]

    В последнее время широко развернуты феногенетические исследования, посвященные сопоставлению возникающих под влиянием различных веществ хемоморфозов и появляющихся изменений в политенных хромосомах слюнных желез Drosophila. В связи с этим большое значение имеет изучение характерных пуфов отдельных чистых линий, являющихся объектом исследования. Для работы важно иметь ту стадию метаморфоза, идентификация которой представляет наименьшие трудности. Поэтому помимо стадии личинки третьего возраста все чаще в исследованиях используется начальная стадия предкуколки, позволяющая сравнительно легко получить почти синхронный материал. [c.142]

    Для того чтобы установить, какие структурные изменения связаны с транскрипцией, было бы очень полезно пронаблюдать экспрессию генов в их естественном состоянии. Однако организация генетического материала такова, что подобный анализ возможен только в некоторых исключительных случаях. Из-за плотной упаковки ДНК в хромосоме и трудности идентификации местоположения отдельных генов визуализация транскрипции отдельных генов невозможна. (Однако, как это описано в гл. 30, активные гены проявляют некоторые характерные особенности, которые можно исследовать in vitro.) [c.354]

    Когда хромосомы вступают в мейоз, у многих из них видна латеральная дифференцированность структуры. На этой стадии хромосомы похожи на нитку бус. Бусинки представляют собой темноокрашенные гранулы, известные под названием хромомер. В мейозе, однако, экспрессия генов незначительна, и этот материал практически не используют для идентификации индивидуальных генов. [c.354]

    Совершенствование цитогенетических методов сделало возможным их применение для изучения многих типов врожденных аномалий и интерсексов. Было показано, что возникновение специфической формы рака, хронического миелолейкоза, вызывается наличием уникальной хромосомной аберрации. Метод дифференциальной окраски хромосом, разработанный Касперсо-ном в 1969 году, сделал возможным идентификацию каждой хромосомы человека, в результате чего цитогенетические методы [c.32]

    С 1967 г. были созданы селективные системы для нескольких ферментов. В одной из них используется локус HPRT Х-хромосомы (раз. 4.2.2.6). Эту систему применяют для идентификации не только Х-сцепленных локусов, но и тех аутосомных, которые транслоцированы на Х-хро- [c.201]

    Рве. П.8.8. А. Принцип идентификации гетерозигот и пренатальная диагностика гемофилии А. Мать (1,1) является двойной гетерозиготой по аллелю гемофилии и ПДРФ-маркеру +. Б. Отец (1,1) здоров и имеет маркер—. Поскольку сын (11,2) унаследовал аллель гемофилии и маркер + от матери, то маркер + должен располагаться ва той же хромосоме, что и аллель гемофилии [c.239]

    Для идентификации бактерий иногда используют также метод ДНК-зондов (генных зондов), являющийся разновидностью метода молекулярной гибридизации ДНК—ДНК. Реакция гибридизации ведется в этом случае не между двумя препаратами тотальной ДНК, а между фрагментом нуклеотидной последовательности ДНК (зондом), включающим ген (генетический маркер), ответственный за какую-то определенную функцию (например, устойчивость к какому-нибудь антибиотику), и ДНК изучаемой бактерии. Самым распространенным способом создания генных зондов является выделение специфических фрагментов путем молекулярного клонирования. Для этого вначале создают банк генов изучаемой бактерии расщеплением ее ДНК эндонуклеазами рестрикции, а затем отбирают нужный клон из суммы фрагментов ДНК методом электрофореза с последующей проверкой генетических свойств этих фрагментов методом трансформации. Далее выбранный фрагмент ДНК с помощью фермента лигазы вводят в состав подходящей плазмиды (вектора), а эту комбинированную-плазмиду вводят в удобный для работы штамм бактерий (например, Es heri hia соН). Из биомассы бактерии, несущей ДНК-зонд, выделяют плазмидную ДНК и метят ее, например, радиоизотопной меткой. Затем осуществляют гибридизацию ДНК зонда с ДНК бактерии. Образовавшиеся гибридные участки проявляют методом ауторадиографии. По относительной частоте гибридизации генетического маркера с хромосомой той или иной бактерии делают заключение о генетическом родстве этих бактерий с исследуемым штаммом. [c.197]

    В структуре хромосом, видимых в световой микроскоп, различают более темные участки — так называемый гетерохроматин и более светлые — эухроматин. В гетерохроматине хромосомы сильнее спирализованы, чем в эухроматине. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых и локализована большая часть известных генов. Характер распределения эу- и гетерохроматиновых участков постоянен для каждой хромосомы на определенной стадии митоза, что служит дополнительным критерием при их идентификации на цитологических препаратах. [c.65]


Смотреть страницы где упоминается термин Хромосом идентификация: [c.27]    [c.444]    [c.451]    [c.462]    [c.463]    [c.470]    [c.480]    [c.989]    [c.337]    [c.23]    [c.299]    [c.45]    [c.128]    [c.305]    [c.58]    [c.169]    [c.21]    [c.9]    [c.9]   
Генетика человека Т.3 (1990) -- [ c.27 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте