Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистидин обнаружение

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные (20 аминокислот), которые входят в состав белков. Все протеиногенные аминокислоты представляют собой -формы. Из них восемь являются незаменимыми, они синтезируются только растениями и не синтезируются в организме человека, поэтому их получают с пищей. К ним относятся валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, иногда в их число включают гистидин и аргинин, которые не синтезируются в организме ребенка. [c.10]


    Для обнаружения ароматических и гетероциклических а-ал нокислот используется ксантопротеиновая реакция (реакция фенилаланин, тирозин, гистидин, триптофан). Например, п действии концентрированной азотной кислотой на тирозин ( разуется нитросоединение, окрашенное в желтый цвет. При j бавлении к нему щелочи окраска становится оранжевой в Bf ионизацией фенольной гидроксильной группы и увеличени вклада аниона в сопряжение. [c.336]

    Фотодинамический эффект обнаружен у всех живых организмов. У прокариот в результате фотодинамического действия индуцируются повреждения многих типов утрата способности формировать колонии, повреждение ДНК, белков, клеточной мембраны. Причина повреждений — фотоокисление некоторых аминокислот (метионина, гистидина, триптофана и др.), нуклеозидов, липидов, полисахаридов и других клеточных компонентов. [c.333]

    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]

    При денатурации белка выявляются некоторые химически реактивные группы, которые в нативном белке не полностью доступны для обнаружения обычно применяемыми методами. Эти замаскированные группы обнаруживаются только при денатурации. К ним принадлежат, например, группы 5Н и некоторые другие (фенольные группы тирозина, циклические ядра гистидина и триптофана). Следует отметить, что целый ряд белков и в нативном состоянии содержит свободные реактивные ЗН-группы, но при денатурации количество их возрастает. [c.18]


    Для обнаружения и идентификации аминокислот на хроматограммах помимо нингидринового теста могут быть использованы и другие цветные реакции. Так, гистидин и другие имидазольные производные можно обнаружить в виде красных пятен, применяя диазореакцию по Паули или варианты этой реакции. Пролин и оксипролин обнаруживаются в виде синих [c.42]

    Образование карнозина из р-аланина и гистидина было установлено в опытах со срезами печени. Для обнаружения синтеза карнозина был применен микробиологический способ определения гистидина определения производили до и после гидролиза кислотой [575]. Данные, полученные при использовании меченого р-аланина, подтвердили образование карнозина из р-аланина и гистидина [576]. [c.272]

    Данные химического анализа. Для обнаружения примесей в препаратах белка можно использовать данные по аминокислотному составу. Допустим, например, что аминокислотный анализ обнаруживает присутствие 0,3 моль гистидина на 1 моль белка. Естественно предположить, что гистидин содержится в загрязняющем веществе, а не в белке, подвергающемся очистке. [c.83]

    К аминокислотам, для которых обнаруженные величины повышаются с увеличением продолжительности гидролиза, относятся лизин, гистидин, аргинин, валин, изолейцин, лейцин и фенилаланин. Среднюю величину рассчитывают по постоянной части кривой. [c.79]

    Диазотированная сульфаниловая кислота —для обнаружения гистидина и тирозина. [c.913]

    О различных цитохромах и данные метода ядерного магнитного резонанса для отдаленно родственных цитохромов с. В результате авторы пришли к выводу, что окислительно-восстановительный потенциал атома железа гема определяют аксиальные лиганды. Так, две гистидиновые боковые цепи в качестве аксиальных лигандов, обнаруженные, например, в Ьд, обеспечивают более низкий окислительно-восстановительный потенциал, чем пара гистидин—метионин, обычно присутствующая в цитохромах с. Если сравнивать цитохромы с, то обнаруживаются вариации длины связи Fe—S [659]. Укоро- [c.255]

    Для обнаружения тирозинсодержащих пептидов следует применять а-нитрозо-р-нафтол (разд. 8) триптофансодержащих-реагент Эрлиха (разд. 9) гистидинсодержащих-реагент Паули (разд. 12) (Ы-концевой гистидин в составе пептида дает чаще коричневую окраску, а не розовую, как обычно) серусодержащих пептидов-тетраиодид платины (разд. 15) аргининсодержащих реакция Сакагучи (разд. 19) пролина и гидроксипролина, если они находятся на Н-конце, - изатин (разд. 22). [c.395]

    Белки дают ряд цветных реакций, обусловленных наличием определенных аминокислотных остатков нли общих химических группировок. Эти реакции широко используются для аналитических целей. Среди них широко известны нингидриновая реакция, позволяющая проводить количественное определение аминогрупп в белках, пептидах и аминокислотах, а также биуретовая реакция, применяемая для качественного и количественного определения белков и пептидов. (При нагревании белка или пептида, но не аминокислоты, с Си 01 в щелочном растворе образуется окрашенное в фиолетовый цвет комплексное соединение меди, количество которого можно определить спектрофотометрически.) Цветные реакции на отдельные аминокислоты используются для обнаружения пептидов, содержащих соответствующие аминокислотные остатки. Для идентификации гуанидиновой группы аргинина применяется реакция Сакагучи — при взаимодействии с а-нафтолом и гипохлоритом натрия гуанидины в щелочной среде дают красное окрашивание. Индольное кольцо триптофана может быть обнаружено реакцией Эрлиха — красно-фиолетовое окрашивание при реакции с п-диме-тиламинобенэальдегидом в Н 804. Реакция Паули позволяет выявить остатки гистидина и тирозина, которые в щелочных растворах реагируют с диазобеизолсульфокислотой, образуя производные, окрашенные в красный цвет. [c.32]

    ЭРЛИХА РЕАКЦИЯ, взаимодействие свежеприготовленной диазобензолсульфокислоты OaS eH li N с фенолами, аром, аминами, имидазолом или др. соед., способными к азосочетанию, с образованием азокрасителя. Примен. для обнаружения гл. обр. производных фенола и имидазола, в т.. 4. белков, содержащих гистидин и тирозин (предел обнацжения 10 10 М). Р-ция открыта II. Эрлихом [c.714]

    Биологические функции имидазола самым тесным образом связаны с основностью его молекулы. Именно по этой причине остаток гистидина в белке содержит в физиологической области pH около 7,4 одновременно заметные количества свободного основания и протонированного имидазолия. Это означает, что он может функционировать как акцептор и как донор протонов в зависимости от потребностей своего ближайшего окружения. Такую же роль играют остатки гистидина и в различных ферментах, например в рибонуклеазе, альдолазе, некоторых протеазах. Другим важным результатом проявления основных свойств имидазола является буферное действие гистидина в системе гемогло-бин-оксигемоглобин [7]. Отмечалось [7], что имидазольная группа в гистидиновой единице полипептидов — самое сильное основание, какое присутствует в каких-либо количествах при физиологических значениях pH, а катион имидазолия является самой сильной из кислот, обнаруженных в заметной концентрации (колебания р/(а зависят от местного окружения). [c.439]


    Гипс двуводный, определение в полугидрате 4127, 4128 Гипсобетон, определение влажности 5138 Гипсовые вяжущие, определение состава 3129 Гипсовые изделия, определение влажности 3896 Гипсовые строительные вещества, определение модификаций Са 04 4738 Гистамин, определение 7225 Гистидин, определение 6985, 8374 Глет свинцовый, определение ацидометрич. 3464 Гликоген методика гистохимического обнаружения 8399 определение 8169 в крови 6880, 6941, 6942. 7531 в мясе 7159 Гликогены, анализ 7389, 7390 Гликокол, определение 7249 Глинозем, ускоренный метод разложения 5502 Глинозем свободный, определение в бокситах 4287 Глины [c.358]

    Для обнаружения рацемизации можно с успехом использовать ферментативные методы. С этой целью применяли ферменты, специфичные для гидролиза пептидных связей в таких пептидах, в которых вновь образующиеся карбоксильные группы взаимодействуют с а-аминокислотными остатками Ь-конфи-гурации [43]. Гистидилфенилаланиларгинилтриптофилглицин был синтезирован из Ь-аминокислот с применением в качестве конденсирующегося реагента N. М -дициклогексилкарбодиимида [44]. После обработки пентапептида трипсином произошло образование гистидилфенилаланиларгинина и триптофилглицина вместе с большим количеством негидролизованного вещества, как это было показано с помощью хроматографии на бумаге. Расщеплению подверглось только 37 /о пентапептида. Фермент лейцинаминопептидаза привел к образованию гистидина, фенилаланина, аргинина, триптофана и глицина в следующих молярных соотношениях 1 1 0,4 0,4 0,4. Таким образом, оба ферментативных метода показывают, что в продукте реакции содержалось только около 40% от исходного оптически чистого Ь-изомера. Лейцинаминопептидаза также применялась для того, чтобы показать, что октапептид, занимающий положения б—13 в молекуле АКТГ, был синтезирован без рацемизации [45]. [c.182]

    Карнозин гидролизуется с образованием р-аланина и гистидина под действием фермента (карнозиназы), найденного в печени и в почках некоторых животных [392]. Возможность использования карнозина (вместо гистидина) для обеспечения роста животных [393] и микроорганизмов [394] можно объяснить предварительным ферментативным гидролизом карнозина. Ансерин, впервые выделенный из мышц гуся, был обнаружен затем в мышцах многих животных. [c.71]

    Некоторые L-аминокислоты, в том числе гистидин, цистеиновая кислота, цистеинсульфиновая кислота, 3,4-диоксифенилала-нин, глутаминовая кислота и 5-окситриптофан, декарбоксилируются ферментами, обнаруженными в тканях млекопитающих. Реакции декарбоксилирования в общем не играют в количественном отнощении существенной роли в превращении аминокислот в организме животных вместе с тем некоторые реакции декарбоксилирования, например те, которые ведут к образованию серотонина и гистамина, имеют большое биологическое значение. У млекопитающих первая аминокислотная декарбоксилаза была открыта в 1936 г. Верле, который обнаружил, что при инкубировании гистидина с ферментными препаратами из почек кролика образуется вещество, обладающее физиологическими свойствами гистамина [200]. Фермент, в дальнейшем полученный в очищенном виде, катализирует следующую реакцию [201, 202]  [c.200]

    Образование и распространение бактериальных декарбоксилаз лизина, орнитина, тирозина, гистидина, аргинина и глутаминовой кислоты изучены довольно подробно исследована также кинетика реакций, катализируемых декарбоксилазами, и описана частичная очистка некоторых из- них. Эти исследования позволили использовать аминокислотные декарбоксилазы для целей количественного определения аминокислот. Такие определения основаны на измерении количества углекислоты, выделяющейся при действии специфической декарбоксилазы [197], или количества образующегося амина [228]. Поскольку аминокислотные декарбоксилазы обладают строгой стереоспецифичностью, они применяются также для обнаружения примеси следов L-изомеров в препаратах D-аминокислот. Кроме того, эти ферменты применяют и для получения D-аминокислот (например, D-лизина или D-глутаминовой кислоты) путем избирательного разрушения L-изомера в рацемических препаратах аминокислот (стр. 94, 95). [c.206]

    Имеется сообщение о том, что гистидин может действовать как кофермент при некоторых реакциях, катализируемых карбо-гидразами кишечника и другими ферментами [720]. Обнаружение ферментативного синтеза N-ацетилимидазола в экстрактах из lostridium kluyveri послужило поводом для предположений об участии имидазольной группы гистидина в реакциях переноса ацильных остатков [1125]. [c.395]

    Продукт присоединения X устойчив к нагреванию (100° С, 15 мин) и к действию кислот (6 н. соляная кислота), но расщепляется при обработке 0,1 н. раствором NaOH. 5-Цистеин включается при облучении в поли-U и РНК, в меньшей степени — в поли-С, поли-dT и ДНК. Включение резко уменьшается в случае двухспиральных полинуклеотидов. Урацил при облучении (253,7 ммк) способен также связываться с глицином, серином, фенилаланином, тирозином, триптофаном, цистином, метионином, гистидином, аргинином и лизином. Наибольший процент связывания обнаружен для цистеина, тирозина и фенилаланина Характер связи (за исключением цис. -еина) не установлен. [c.637]

    Полипептид предоставляет только один аксиальный лиганд, а именно проксимальный гистидин Р8. Этот гистидин в некоторых мутантных гемоглобинах в половине субъединиц замещается на тирозин, однако неизвестно, могут ли эти субъединицы обратимо связывать кислород (разд. 7.4). Тем не менее обнаруженное разнообразие аксиальных лигандов в комплексах Со Юг (разд. 7.1) показывает, что гистидин, хотя и является предпочтительным лигандом у большинства гемоглобйнов и миоглобинов, все же не единственно возможный. Второй, дистальный гистидин Е7 обычно располагается непосредственно при атоме железа по другую сторону порфиринового кольца, однако координирование его неиз- [c.189]

    Наряду с соответствующими производными ряда простых аминокислот получены также -( -метоксифенилазо)-бензил-оксикарбонильные производные ь-аргинина (ацилирование в смеси едкого натра с бикарбонатом натрия), р-метилового эфира ь-аспарагиновой кислоты, у-метилового эфира ь-глутамино-вой кислоты и Ы -бензил-г-гистидина [2037]. Ы -Защищенный лизин синтезирован через медный комплекс, а соответствующий метиловый эфир получен с помощью Ы-карбоксиангидрида, приготовленного из Ы -защищенного лизина и фосгена [2033]. Благодаря окраске, присущей такого рода Ы-защищенным аминокислотам и пептидам, оказывается возможным их непосредственное обнаружение и количественное определение при [c.63]

    Обнаружение гистидина и тирозина реагентом Паули. Хроматограмму опрыскивают свежеприготовленным раствором 0,1 г диазотированной сульфаниловой кислоты в 20 мл 10%-ного раствора карбоната натрия. Гистидин и соответствующие пептиды дают отчетливо красные пятна на желтом фоне, пятна тирозина и его пептидов имеют красно-коричневый оттенок. [c.126]

    Около половины небелкового азота представлено аспарагином. В последнее время обнаружен такЖ е глютамин. Азот этих двух соединений составляет около 40% всего азота. Количество азотистых оснований находится в пределах 25% общего азота. В свободном состоянии, кроме аспарагина и глютамина, в клубнях в небольших количествах содержатся следующие аминокислоты и азотистые основания аргинин, лизин, лейцин, триптофан, гистидин, холин, ацетилхолин, тригонелин, аллантоин, ксантин, гипоксантин, гуанин, аденин, кадаверин, глютатион. [c.15]

    Карты электронной плотности активного центра Hg-KПA были рассчитаны с высоким разрешением. Центр иона металла смещен на 1,0 А главным образом вдоль осей л и г/ по сравнению с положением иона цинка. На рис. 15.7 атом ртути был бы выше и ближе к остатку Н15-69. Связь этого металла с белком тоже осуществляется через атомы N1 двух остатков гистидина, 69 и 196, которые расположены так же, как в комплексе с 2п. Возможность поворота имидазольного кольца в Н1з-196, в результате чего в связи с металлом мог бы вместо атома N1 участвовать атом N3, следует исключить. Причиной этого является обнаружение на картах молекулы воды, которая, как и в случае цинка, соединена с атомом N3 этой аминокислоты водородной связью. Электронная плотность, соответствующая карбоксильной группе остатка С1и-72, несколько понижена. Тем не менее и эта группа, по-видимому, взаимодействует с атомом ртути. В остальном карты электронной плотности для комплексов белка с 2п и Нд совпадают. Возможность использовать Н -КПА при расчете фаз подтверждает изоморфизм двух структур. В растворе ртутное производное карбоксипептидазы проявляет высокую эстеразную активность, но не катализирует гидролиз пептидов [41]. Однако в кристаллическом виде Hg-iKПA в отличие от 2п-КПА обладает и высокой пептидазной активностью, которая составляет примерно 1/1000 активности 2п-фермента в растворе [73]. [c.525]

    Активность внеклеточной протеазы достигает значений, близких к пределу обнаружения, вследствие чего она изучалась при концентрациях дрожжевого осадка, в сто раз превышающих нормальные [52]. После завершения вторичного брожения протеоли-тическая активность прекращается, а через несколько месяцев она возобновляется и постепенно возрастает в течение двух лет, достигая максимального значения через шесть лет [31 ]. За первый месяц содержание белков уменьшается, а аминокислот — возрастает. В течение четырех месяцев созревания концентрация аминокислот (особенно аспарагиновой кислоты, гистидина и лизина) продолжает возрастать в течение первых 4 мес. созревания [4]. [c.193]


Смотреть страницы где упоминается термин Гистидин обнаружение: [c.51]    [c.714]    [c.205]    [c.182]    [c.152]    [c.28]    [c.291]    [c.390]    [c.9]    [c.377]    [c.439]    [c.227]    [c.107]    [c.122]    [c.99]    [c.178]    [c.178]    [c.64]    [c.227]   
Практическая химия белка (1989) -- [ c.270 , c.361 ]




ПОИСК





Смотрите так же термины и статьи:

Гистидин



© 2025 chem21.info Реклама на сайте