Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция связь со строением органических соединений

    Особое значение в истории теоретического катализа имеют взгляды Д. И. Менделеева, В одной из своих работ он высказал идею о том, что при соприкосновении двух веществ наступает изменение их внутреннего движения (пертурбации), что может привести к поглощению (сорбции) одного реагента другим, т. е. к катализу. Последний тесно связан с обычными реакциями, но отличается от них тем, что при обычных реакциях изменению подвергаются все реагирующие вещества, при катализе же один из них—катализатор—практически остается неизмененным. Взгляды Д. И. Менделеева находятся в тесной связи с теорией строения органических соединений и с учением о взаимном влиянии атомов в молекулах по А. М. Бутлерову и В. В. Марковникову. Эти пертурбации или деформации молекул под действием катализаторов приводят к образованию новых соединений. Не менее важную роль в развитии теоретического катализа сыграли работы Д. П. Коновалова. Он впервые в 1884 г. обратил внимание на физико-химические закономерности в катализе, на роль поверхности контакта и ее состояние, на роль адсорбции и на важность подбора катализаторов. [c.18]


    На электродах из платиновых металлов адсорбция органических веществ, как правило, носит необратимый характер и сопровождается разрывом С—Н- и даже С—С-связей. Поэтому описанные модельные представления о строении двойного слоя в присутствии органических соединений к электродам из этих металлов не применимы. [c.169]

    Строение двойного электрического слоя для металлов группы платины в водных растворах электролитов отличается тремя главными особенностями 1) участием в образовании двойного слоя наряду с ионами раствора н молекулами растворителя адсорбирующихся на поверхности электрода атомов водорода и кислорода 2) ярко выраженным образованием прочных хемосорбционных связей между поверхностью металла и адсорбирующимися ионами, в результате чего многие, ионы при адсорбции частично или даже полностью теряют свой заряд (это явление получило название хемосорбции с переносом заряда) 3) диссоциативным необратимым характером адсорбции органических соединений. [c.182]

    При равной стабильности ингибирующих соединений эффективность функционального атома в адсорбционных процессах изменяется в такой последовательности селен > сера > азот > кислород, что связано с меньшей злектроотрицательностью элементов слева [38]. Кроме того, адсорбция поверхностно-активных органических веществ растет с увеличением их молекулярной массы и дипольного момента, более эффективными ингибиторами оказываются органические соединения асимметричного строения. [c.146]

    В состав больщей части органических ингибиторов входит, по крайней мере, одна полярная группа с атомом азота, серы или кислорода, а в некоторых случаях — селена или фосфора, то есть элементов, имеющих на внешней орбите неподеленные пары электронов, способных поэтому к активному донорно-акцептор-ному взаимодействию. Использование органических соединений, содержащих кратные (двойные и тройные) связи, обусловлено наличием п-связей, для которых характерны высокая поляризуемость и способность к взаимодействию с металлом. При равной стабильности ингибирующих соединений эффективность функционального атома в адсорбционных процессах изменяется в последовательности селен > сера > азот > кислород, что связано с меньшей электроотрицательностью элементов слева [4]. Кроме того, адсорбция поверхностно-активных органических веществ растет с увеличением их молекулярной массы и дипольного момента, более эффективными ингибиторами оказываются органические соединения асимметричного строения. [c.326]


    При низких концентрациях органического растворителя сдвиг Еу, волн тем больше, чем выше поверхностная активность растворителя [843, 582] однако при переходе к растворителям с малым содержанием воды значения Еу, волн одного и того же деполяризатора становятся, как уже отмечалось, почти одинаковыми в различных растворителях (например, значения Еу, бромтиофенов в 91%-пом этиловом спирте и 99%-ном диметилформамиде — см. рис. 64). По-видимому, при очень высокой концентрации органического растворителя происходит практически полная десорбция деполяризатора, и природа растворителя почти не оказывает влияния на Еу, волн Еу, в этом случае определяются не уравнениями (126) или (127), а выражением (10) (на стр. 10) для Еу, необратимых волн без адсорбции деполяризатора. Следовательно, только в растворах с высокой концентрацией органического растворителя можно получить неискаженные адсорбционными эффектами значения Еу, для органических соединений, которые могут быть использованы для установления связи со строением этих соединений. [c.251]

    Каталитический эффект материала катода в процессах электросинтеза остается во многих случаях невыясненным. В теории катализа каталитические свойства металлов связываются с их электронным строением. Переход электронов с й-орбитали на -орбиталь и I наоборот приводит к возникновению свободных валентностей у по- I верхностных атомов металлов, что способствует адсорбции молекул органических соединений и деформации связей в них, облегчающих акт восстановления. Относительное число свободных валентностей ( вес -состояний) коррелирует с каталитической активностью чем выше вес -состояний, тем выше каталитическая активность металла. [c.29]

    Однако сопоставление скачков потенциала (АЕ) на границах раствор — ртуть и раствор — воздух в случае ароматических соединений приводит к сильным расхождениям как по величине, так в ряде случаев и по знаку АЕ. Так, например, для орто- и паракрезола АЕ на границе ртуть — раствор соответственно равны —0,20 и —0,29 в, тогда как на границе воздух — раствор они имеют значения +0,01 и +0,26 в. Вначале сдвиг т. н. з. в отрицательную сторону в случае адсорбции на ртути ароматических соединений был связан с более плоской ориентацией молекул на поверхности ртути, при которой облегчается взаимодействие отрицательных атомов полярных групп с металлом. Однако в работах Геровича [40, 41] было показано, что такие соединения, как бензол, нафталин, антрацен, фенантрен и хризен, несмотря на их неполярный характер, также смещают т. п. з. в отрицательную сторону, причем адсорбируемость этих соединений при > О возрастает с увеличением числа бензольных колец в молекуле органического вещества. Эти результаты дали основание предположить, что аномальное поведение ароматических соединений на границе ртуть — раствор связано не только с их более плоской ориентацией, но и с особенностями строения бензольного кольца. [c.186]

    Как видно из вышеизложенного, процессы электрохимического окисления и восстановления природных соединений гетероциклического строения, главным образом алкалоидов, привлекают внимание многих исследователей. В связи с этим может создаться впечатление о широком применении электрохимических методов в этой области органического синтеза. Однако следует подчеркнуть, что преобладающее большинство опубликованных в литературе работ посвящено вопросам изучения адсорбции и полярографии этих веществ и очень мало исследований по их электрохимическому окислению и восстановлению с целью синтеза ценных соединений. [c.208]

    Адсорбция поверхностно-активных веществ (ПАВ) на ртути исследовалась неоднократно при помощи электрокапиллярных измерений. В частности, к работам в этой области относится изучение влияния адсорбции органических молекул и катионов на кинетику электродных процессов [1—4] и сравнительное рассмотрение адсорбции некоторых органических кислот, спиртов и аминов па границах раздела раствор — воздух и раствор — ртуть [5—8]. Связь адсорбируемости веществ на ртути с особенностями их строения изучена в основном для алифатических соединений, где выяснено влияние на работу адсорбции природы функциональной группы [6, 8], галоидного замещения [5, 7, 8] и проверена применимость правила Траубе при адсорбции в гомологических рядах [6]. [c.18]

    Иное наблюдается при воостановлении, например, кислорода ( незатрудненная реакция). Роль носителя в этой реакции значительно возрастает, особенно в области разведенных слоев. Это обнаружено нами нри изучении газофазного восстановления избытка кислорода окисью углерода (окисление окиси углерода) на палладиевых, платиновых и смешанных катализаторах на носителях [10]. Указанная реакция по своей схеме имеет много общего с реакцией восстановления л-бензохинона и нитросоединений. 1В обоих случаях кислородоодержа-щие соединения — акцепторы электронов адсорбируются на поверхности металлического катализатора, отнимая от него электроны, с образованием отрицательно заряженных соединений. Восстановитель — донор электронов (водород, окись углерода) активируется на поверхности при мгновенной адсорбции из газовой фазы с отдачей электрона. При этом чем выше энергия связи донора электронов с атомной фазой, тем выше скорость реакции. Однако в характере участия металлического катализатора на носителе в рассматриваемых процессах наблюдается существенная разница. Она заключается в следующем. Для протекания восстановления сложных по строению органических соединений с максимальной скоростью требуется сочетание двух типов двухатомных активных центров, одни из которых расположены на крупных кристаллах, обладающих объемными свойствами металла  [c.55]


    Органические соединения играют также большую роль в керамической практике в качестве тласти-фикаторов и органических цементов . Влияние их строения на коллоидные свойства систем глина — вода исследовали Мак-Намара и Комефоро . Пластификаторы действуют посредством специфического слипания, вызываемого присутствием активных групп, адсорбированных на неметаллических поверхностях. Активность приблизительно пропорциональна длине их молекулярных цепей. Смачивание поверхности глинистых частиц связующим веществом — необходимое предварительное условие для собственно адсорбции. Такие эмпирические наблюдения особенно подтверждаются применением протеиновых связующих веществ вместе с активными группами аминокислот нли углеводов, например глюкозы, гуммиарабика, кукурузной муки, крахмала и т. д. [c.338]

    Влияние строения двойного электрического слоя на кинетику электродного процесса впервые количественно было рассмотрено А. Н. Фрумкиным [1] на примере реакции разряда ионов водорода. Фрумкин показал также необходимость учета адсорбции реагирующих частиц на электроде. Возможность влияния адсорбции органических соединений на ход кривых зависимости силы тока (/) от потенциала (Е) отметил П. Герасименко [2] еще в 1929 г. Впервые на связь между адсорбцией органических веществ и кинетикой их электрохимического восстановления указал Л. И. Антропов [3, 4]. Роль поверхности катода и адсорбции восстанавливающегося вещества при электрохимическом восстановлении ароматических нитросоединений была рассмотрена в работах Н. А. Изгарышева и М. Я. Фиошина [5, 6]. [c.23]

    Исходя из строения гидразина, следует ожидать, что он способен адсорбироваться на электродах. Молекула гидразина имеет динольный момент 1,83—1,90 дебая [1]. Прямых адсорбционных измерений для гидразина до сих нор не проводилось. Однако наши опыты показали, что на никелевом и платиновом электродах окисление гидразина протекает через его адсорбцию. Об этом свидетельствуют кривые зависимости скорости реакции от концентрации гидразина в кинетической области (см. рис. 4 и 8), быстрый переход из области смешанной кинетики в кинетическую область (см. рис 3), характерный для процессов, идуш,нх через адсорбцию (12, 33]. На возможность адсорбции гидразина или продуктов его диссоциации указывалось и другими авторами [3, 8]. При адсорбции гидразина может происходить его диссоциация, подобно диссоциации органических восстановителей [34, 35]. Энергия связи между водородом и азотом в молекуле гидразина слабее энергии связи с углеродом в органических соединениях [36, 37]. Например, энергия связи Н—КгНд равна 76 ккал, в то время как энергия связи Н—СН ОН равна 92 ккал [36]. При контакте гидразина с платиновой чернью, нанесенной на одну сторону тонкой палладиевой фольги, обнаружен водород на второй стороне фольги [8]. Можно предположить, что гидразин адсорбируется на поверхности электрода по различным схемам  [c.261]

    Используя уравнение (1.88), связывающее 157 и Д11)1 при проявлении ингибитором обоих эффектов, можно оценить величину А ] " при адсорбции П-2. Согласно расчетам, найдено Л ф " 0,11В, что находится в. пределах изменения фгпотенциала при адсорбции органических катионов. Для П-3 относительный вклад рэффекта выше, чем эффекта экранирования. Это можно объяснить большей локализацией положительного заряда на атомах азота в катионах П-3, чем в катионах П-2, что связано с особенностями строения этих соединений. Об этом же говорит и несколько большая величина Дг )" = 0,12В, рассчитанная по уравнению (1.88). [c.57]

    В первом разделе представлены работы, в которых освещаются ре )ультаты теоретических и экспериментальных исследований строения молекул, приводятся многочисленные экспериментальные данные о спектрах органических, элементооргаиических и комплексных соединений, а также расчеты спектральных и электрооптических характеристик молекул. Вто)эой раздел содержит работы по исследованию строения вещества и межмолекулярных взаимодействий, ряд работ откосится к изучению строения и динамики кристаллической решетки. Третий раздел — применение методов спектроскопии к изучению химических реакций, явлений адсорбции и вопросам связи между реакционной способностью и спектроскопическими характеристиками молекул, несколько работ посвящено спектральным исследованиям высокомолекулярных соединений и биологических объектов. [c.2]


Смотреть страницы где упоминается термин Адсорбция связь со строением органических соединений: [c.339]    [c.189]    [c.12]   
Лабораторная техника органической химии (1966) -- [ c.338 , c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция органических соединений

Органические соединения строение

Органические строения

Связь в органических соединения



© 2024 chem21.info Реклама на сайте