Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи в между полинуклеотидами

    Специфич. наборы водородных связей между пиримидиновыми и пуриновыми основаниями в комплементарных участках цепей (см. Комплементарность), а также меж-плоскостные взаимод. между соседними основаниями в цепи определяют формирование и стабилизацию вторичной и третичной структуры нуклеиновых к-т. Последовательность пуриновых и пиримидиновых оснований в полинуклеотидной цепи определяет генетич информацию ДНК и матричных РНК. Модификация Пов полинуклеотидах под воздействием мутагенов может приводить к изменению информац. смысла (точковой мутации). [c.530]


    Информация, необходимая для построения определенной аминокислотной последовательности, содержится в дезоксирибонуклеиновой кислоте (ДНК). Молекула ДНК является полинуклеотидом, образованным основаниями аденином (А), гуанином (G), цитозином (С), тимином (Т), остатками фосфорной кислоты и 2-дезоксирибозой в качестве углеводного компонента. Все ДНК построены как регулярные двойные спирали, структура которых стабилизирована водородными связями между комплементарными парами оснований А — Т и О — С. В ДНК каждые три следующих один за другим нуклеотида (триплетный код) кодируют одну аминокислоту (189 — 192]. Для 20 протеиногенных аминокислот существуют 64 кодовые единицы (кодона), из которых по 6 приходится на аминокислоты Leu, [c.391]

    Вторичная структура молекулы ДНК, по Уотсону и Крику, представляет собой а-спираль, состоящую из двух полинуклеотид ных цепей, закрученных одна вокруг другой и вокруг общей для обеих цепей оси (рис. 92). Эти цепи связаны водородными связями между молекулами пиримидиновых и пуриновых оснований. Причем было установлено, что такого рода прочные связи образуются лишь между, специфическими парами аденин — тимин, гуанин — цитозин  [c.557]

    Какую роль можно приписать Mg++ при получении смешанных двойных спиралей поли-А и поли-У, учитывая, что цепи полинуклеотидов в спиральной структуре удерживаются вместе за счет водородных связей между комплементарными основаниями  [c.355]

    Приведенные в табл. 6-1 результаты позволяют предположить, что специфичность обусловлена присутствием и расположением функциональных групп, обнаруженных лишь в пиримидиновых производных, в соответствии с постулатом [125], согласно которому образование водородной связи между карбонильным кислородом при атоме Сг пиримидинового кольца и 2 -гидроксильной группой сахара усиливает нуклеофильный характер этой гидроксильной группы (и может вполне объяснить любые различия в конформации сахара в пуриновых нуклеозидах по сравнению с пиримидиновыми нуклеозидами), облегчая таким образом нуклеофильную атаку атома фосфора и образование нуклеозид-2, З -циклофосфата. (Некоторым подтверждением этой концепции может служить большая устойчивость к химическому гидролизу пуриновых полинуклеотидов по сравнению с пиримидиновыми полинуклеотидами.) Циклическая система пиримидинового кольца, по-видимому, необходима для сохранения стереохимических возможностей взаимодействия. [c.380]

    Далее оказалось, что простые полинуклеотидные цепочки обладают способностью давать значительно большее разнообразие спиральных комплексов, чем природные сополимеры сложного состава. Так, цепи составленные из одних пиримидиновых полинуклеотидов, дают спиральные комплексы сами с собой. Это явление не противоречит теории, так как условия для образования водородных связей между основаниями здесь налицо  [c.229]


    Двуспиральные полинуклеотиды. В большиистве случаев ДНК существует в виде двойной спирали Уотсона — Крика (рис. 1 1). Ее основные характеристики сводятся к следующему. Две поли-дезоксирибонуклеотидные цепи соединены друг с другом с помощью водородных связей и образуют правовинтовую спираль вокруг общей оси. Цепи двойной спирали антипараллельиы и комплементарны, т. е. образование водородных связей (поперечных) всегда происходит между основаниями С и О или А и Т. [c.335]

    В последнее время силам стэкинг-взаимодействия придают более существенное, чем. ранее, значение в поддержании вторичной структуры ДНК, а водородным связям между комплементарными парами оснований приписывают в большей мере направляющую роль во взаимной ориентации оснований в процессе стэкинг-взаимодействия. Действительно, вклад гидрофобных взаимодействий в поддержание вторичной структуры биспиральных полинуклеотидов возрастает при замене У на Т, т. е. за счет добавочно вводимого гидрофобного метильного радикала. [c.209]

    Так как формирование нового полинуклеотида идет на полинуклеотидной матрице при непрерывном замыкании водородных связей между комплементарными пуриновыми и пиримидиновыми основаниями матрицы и нуклеозидтрифосфатов, то условием функционирования этого механизма является одноцепочечная структура матрицы. Поэтому в случае биосинтеза молекул ДНК, характеризующихся биспиральной структурой, существенным моментом [c.248]

    Здесь и далее мы испо.пьзуем термин первичная, вторичная, третичная и четвертичная структуры нуклеиновых кислот в следующем смысле. Первичная структура — последовательность пуклеозндпых звеньев, соединенных фосфо-диэфирной связью в непрерывную и неразветвленную полинуклеотидную цепь. Вторичная структура — в случае одноцепочечных, главным образом монотонных полинуклеотидов, — пространственное расположение нуклеозидных звеньев, обусловленное межплоскостным взаимодействием оснований. В случае двух комплементарных цепей вторичная структура представляет собой жесткую двойную спираль, стабилизованную как ме.жплоскостным взаимодействием соседних оснований в пределах одной цепи, так и водородными связями между противолежащими основаниями в параллельных цепях. Третичная структура образуется в результате реализации наряду с двухспиральными иных типов фиксированной укладки полинуклеотидных цепей. Четвертичная структура — пространственное расположение взаимодействующих макромолекул (обычно полинуклеотидов и полипептидов) в нуклеопротеидах — рибосомах, вирусах и т. д. [c.16]

    Большие расхождения между структурными параметрами, полученными для одного и того же основания в разных работах, зависят в ряде случаев от того, является ли основание протонированным или непротонированным [13]. Кроме того, сказываются наличие межмолекулярных водородных связей и,, наверно, в меньшей степени характер упаковки молекул в кристалле. Несмотря на это, имеет смысл для расчетов конформаций моно- и полинуклеотидов использовать усредненные величины. [c.175]

    Полинуклеотиды связаны друг с другом водородными связями, образующими поперечные мостики между пиримидиновыми и пуриновыми основаниями (рис. 3.1), [c.255]

    Приблизительный квантово-механический расчет перекрывания я-электронных систем между параллельными плоскостями оснований в ДНК при расстоянии 3,36 А также указывает на существование заметного л-электронного взаимодействия, что может количественно объяснить аномалии в ультрафиолетовых спектрах олиго- и полинуклеотидов и частичную укладку оснований друг над другом даже в олигонуклеотидах без образования соответствующих водородных связей [378]. Различные величины перекрывания л-электронных систем для различных гетероциклических систем показывают, что распределение электронов и л-электронные взаимодействия зависят от последовательности оснований, что соответствует экспериментальным данным [379]. [c.635]

    Ввиду только что отмеченного обстоятельства разделение коротких олигонуклеотидов строго по их длине предпочитают вести в гелях, где фиксация однонитевого состояния нитей ДНК или РНК обеспечивается не щелочью, а присутствием высокой концентрации мочевины. Образуя прочные водородные связи с нуклеиновыми основаниями, мочевина препятствует их комплементарному спариванию. Сама по себе мочевина не распрямляет нити полинуклеотидов, но в отсутствие нейтрализации фосфатов ионами металлов эти нити оказываются достаточно расправленными для того, чтобы обеспечить надежное разделение олигонуклеотидов длиной в несколько сотен мономерных звеньев, отличающихся между собой всего лишь на одно звено. Именно такая задача стоит при использовании электрофореза в современных методах определения последовательности оснований ( секвенирования ) в молекулах ДНК и РНК. [c.131]

    Влияние pH на конформации полинуклеотидных цепей в растворе обусловлено тем обстоятельством, что водородные связи, стабилизующие спиральную структуру, образуются в этих молекулах между группами, способными к ионизации, и поэтому ионизация хотя бы одной из групп, участвующих в об.разовании водородной связи, означает одновременно разрыв последней, что ведет к изменению конформации молекулы. В этом случае мы встречаемся с ярким примером специфических взаимодействий, о которых говорилось ранее применительно к полипептидам (см. 26, 27). Действительно, ионизация оснований, т. е. процесс отдачи или связывания протона (соответственно для кислотных и основных ионизуемых групп) осуществляется лишь при отсутствии водородных связей в спиральной форме такой процесс не имеет места. Пуриновые и пиримидиновые основания, входящие в ДНК и синтетические полинуклеотиды, образуют водородные связи между аминогруппой и атомом азота, включенным в цикл, с одной стороны, и группой —МН—СО — с другой. Отрицательные логарифмы констант диссоциации этих групп соответственно равны —2,9 (гуанин) 3,7—3,8 (аденин) 4,5—4,8 (цитозин) р/Скн-со 9,5—11,4 (гуанин, тимин, урацил). Поскольку аминогруппа присоединяет протон, а группа —NH—СО— отдает его, то первая заряжена при pH < рКш2 а вторая при pH > рКш-со- Таким образом, в диапазоне рК 2 < рН < / АГын-со пуриновые и пиримидиновые основания не заряжены, и здесь возможно существование спиральной конформации молекул. Интересный [c.372]


    В отличие от мочевины, формамид является весьма сильным денатурирующим агентом. Он полностью разрушает вторичную Структуру полинуклеотидов—как водородные связи, так и стэ- инг-взаимодействие между плоскостями гетероциклических ко-Мп нуклеиновых оснований. Электрофоретическая подвижность нуклеиновых кислот в гелях с формамидом зависит только от молекулярной массы, что открывает возможность ее определения р помощью маркеров и для высокомолекулярной РНК. [c.135]

    Наконец, можно задать вопрос почему рибоза — единственный сахар, присутствующий в полинуклеотидах Нп один другой сахар не способен к столь эффективной реакции конденсации соответствующих нуклеотидов, а З -дезокси-нуклеотиды не полимеризуются. Видимо, и 2 -0Н, и З -ОН необходимы для протекания полимеризации. Причина этого заключается в образовании водородной связи между обеими группами, которые только в рибонуклеотидах находятся в ijti -положеиии, чю приводит к повышению кислотности R0—ОН-группы в 2 -положенпи. Еще один важный факт состоит в том, что конденсация полинуклеотидов очень специфична для 1уклеотидов, рибозные остатки которых имеют D-конфигурацию. Оргел показал это эксперимен-O Og тально. Если смесь L- и D-рибояуклеотидов добавить [c.188]

    Нуклеиновые кислоты образованы нуклеотидами, связанными фос-фодиэфирными группами через группы в положениях 3 и 5. Такая структура имеет большое число вращательных степеней свободы. Для закручивания структуры представляют интерес 5 точек сахарофосфатного остова и две внутренние точки молекулы нуклеотида (точки 2 и 3, в которых возможны эндо- и экзо-положения сахара). Последнее обстоятельство связано с возможностью вращения связи сахар—фосфат (син и ангт) в нуклеотиде. Рассмотрим возникающие конфигуращ1и с точки зрения энергетической выгодности. Стабилизирующими факторами двойной спирали являются электростатические силы отталкивания между фосфатными группами, гидрофобное взаимодействие между основаниями (стэкинг-взаимодействие) и водородные связи между комплементарными основаниями. Именно эти факторы должны определять углы вращения сахаров и оснований, а также всю структуру синтезируемых олиго- и полинуклеотидов. [c.190]

    Свойством полинуклеотидных молекул является способиость к точному воспроизведению, основанная на принципе структурной ком-плементарности. В модельных опытах было показано, что полинуклео-тидная цепь может служить матрицей, связывающей свободные нуклеотиды. При смешивании АМФ с полиуридилоеой кислотой свободные молекулы АМФ связываются с остатками полиуридило вой кислоты при помощи водородных связей между комплементарными основаниями. В результате возникала спиральная структура. Точно так же наблюдали формирование устойчивой комплементарной спирали при смешивании полицитидиловой кислоты с гуанозинмонофосфатом. Для синтеза комплементарных полинуклеотидов необходимо было, чтобы между связанными с матрицей мононуклеотидами образовались меж-нуклеотидные связи. Экспериментально была показана принципиальная возможность возникновения таких связей без какого-либо участия ферментов. Таким образом, полинуклеотиды могли служить матрицей для неферментативного синтеза (Комплементарных полинуклеотидов. [c.174]

    Детальный анализ всевозможных вариантов образования водородных связей между основаниями показал, что в биспиральной молекуле ДНК основания уложены парами пурин из одной цепи и пиримидин из другой в соответствии с правилами Чаргаффа. Поскольку ориентация оснований на плоскости не является, очевидно, произвольной, и основания в полинуклеотидах представлены в лактамной форме, наиболее вероятными были признаны пары аденин-тимин и гуанин-цитозин. Этот способ спаривания получил в дальнейшем экспериментальное подтверждение. Избирательность взаимодействия пар А-Т и Г-Ц принято выражать термином комплементарность , а соответствующие азотистые основания называют комплементарными. Стабильность А-Т оснований обеспечивается двумя водородными связями, а пар Г-Ц - тремя, что в свою очередь определяется особенностями расположения функциональных групп азотистых оснований. Длина водородных связей между основаниями составляет около 0,3 нм. Таким образом, комплементарными оказываются не только отдельные основания, но и дезоксирибонуклеотидные цепи ДНК [c.108]

    Эти ряды показывают, что двухспиральные рибополинуклеотиды более стабильны, чем двухспиральные дезоксирибополинуклеотиды. Такая закономерность наблюдается и для природных полинуклеотидов. Так, Гщ двухспиральной РНК вируса карликовости риса на 15° выше, чем Тщ ДНК с подобным составом оснований Данный эффект, возможно, связан с образованием водородных связей между гидроксилом остатка рибозы и соответствующим основанием [c.265]

    Несмотря на то что по гидродинамическим свойствам полиадениловая и полицитидиловая кислоты в нейтральных и щелочных средах представляют собой статистические клубки 229-232 наличие гипохромного эффекта 232.233 кругового дихроизмаи дисперсии оптического вращения 2зе, 237 свидетельствует о том, что между основаниями в этих полинуклеотидах существуют взаимодействия. Кривые дисперсии оптического вращения и кругового дихроизма очень схожи с аналогичными кривыми для динуклеозидмонофосфатов (см. стр. 238), и это дает основание предположить, что в случае гомополимера водородные связи между основаниями не образуются. Расчеты кривых дисперсии оптического вращения для полиадениловой и полицитидиловой кислот, выполненные исходя из свойств динуклеозидфосфатов, дают результаты, согласующиеся с экспериментальными . Наиболее прямыми доказательствами односпиральной структуры этих полинуклеотидов является аналогия их свойств со свойствами полинуклеотидов, у которых невозможно образование водородных связей в силу замешения соответствующих водородов алкильными радикала-,vijj 71,239,2 g также результаты кинетических исследований реакции с формальдегидом [c.283]

    Одноцепочечные полинуклеотиды, в которых отсутствуют внутримолекулярные водородные связи между основаниями (например, полиуридиловая кислота), гладко реагируют с карбодиимидом СП ° Зо скорость реакции при этом несколько ниже, чем для уридина (см. табл. 5.7). С двухцепочечными комплексами рибо-полинуклеотндов и ДНК реакция практически не происходит Скорость и степень взаимодействия карбодиимида СП с тРНК сильно зависит от условий реакции При pH 8 и 30—40° С достигается полная модификация всех реакционноспособных остатков нуклеозидов в присутствии же ионов при более низкой тем- [c.384]

    Точно так же, как высокая поляризуемость симметричных водородных связей с двумя минимумами вызывает непрерывное поглощение в ИК-спектрах растворов, меньшая поляризуемость несимметричной водородной связи с перегибом на потенциальной кривой или с двумя минимумами является причиной ушире-ния полос. Иногда такое уширение наблюдается, например, для валентных колебаний ЫН, образующих водородную связь. Фол-дес и Сандорфи [237], рассматривая ангармоничность колебаний связи МН" -М, пришли к заключению, что потенциальная кривая имеет именно такой вид. Шульман [238] считает, что в полинуклеотидах несимметричная потенциальная кривая имеет место для водородной связи между атомами N(3) тимина и N(1) аденина (см. также разд. V. 17). Сильное уширение в действительности наблюдается для полос валентных колебаний ЫН-группы, образующей указанную водородную связь, так же как [c.299]

    Однако теперь уже стало ясно, что ь е водородные связи между основаниями являются определяющими для макроструктуры полинуклеотидов, как считали Уотсон и Крик. Поэтому истинным критерием для нахождения вторичной структуры тРНК и иРНК должна стать максимальная длина регулярного комплементарного участка, в котором основания располагаются стопкообразно (критерий максимального спаривания дает для случайных последовательностей весьма дефектные структуры, как это видно, в частности, из рис. 9.7а). Еще лучше, если эти критерии войдут в комбинаторные расчеты с соответствующими весами. [c.415]

    Молекула ДНК представляет собой комплекс из двух полимерных цепочек, связанных между собой межмолекулярными силами (рис. 4.2). Каждая цепочка в комплексе образует правую спираль (точнее, винтовую линию) и состоит из сахаро-фосфатного хребта с присоединенными к нему азотистыми основаниями четырех сортов — аденина (А), гуанина (Г), тимина (Т) и цитозина (Ц). Повторяющийся элемент цепочки (азотистое основание + сахар + фосфат) называется нуклеотидом. Таким образом, ДНК состоит из двух закрученных относительно друг друга полинуклеотид-ных цепочек. Существенно, что если связи между нуклеотидами внутри каждой цепочки являются жесткими, ковалентными и имеют энергию около 60 ккал/моль (3 эВ), то связи между полинуклеотидными цепочками по крайней мере на порядок слабее. Существует строгое правило компле-ментарности (соответствия) этих цепочек. Именно, всегда против аденина находится ТИМИН, а против гуанина цитозин. Комплементарность определяется стерическим соответствием оснований. При этом комплементарные пары оснований стабилизированы водородными связями (изображенными на рис. 4.3 пунктиром), электростатическими и ван-дер-ваальсовыми силами. Существенное значение для стабильности ДНК имеет взаимодействие между соседними парами оснований в двойной спирали. Параметры структуры ДНК следующие диаметр молекулы 20 А, расстояние между соседними парами оснований 3,4 А на виток спирали приходится 10 пар оснований, так что соседние пары повернуты относительно друг друга на угол [c.71]

    В последующих многочисленных работах, например [64—67], в которых критиковались количественные оценки, сделанные Де Во и Тиноко, использовались предложенные ими схемы вычисления свободной энергии. Корректность той или иной параметризации различных составляющих свободной энергии и в настоящее время не может быть доказана с определенностью. Между тем основные идеи были высказаны именно Де Во и Тиноко и ими же теоретически было установлено наличие сильных осевых взаимодействий, стабилизирующих структуру однотяжевых и двухтяжевых полинуклеотидов, в то время как водородные связи, на которых основывалась модель Уотсона и Крика, играют второстепен-ную роль. Анализируя результаты расчетов различных авторов, можно отметить, что хотя между ними нет количественного согласия, качественный вывод Де Во и Тиноко о доминирующей роли вертикальных взаимодействий в стабилизации спирали разделяется всеми. [c.185]

    В работах [63—65] были измерены температуры плавления других биологически важных макромолекул, синтетических полинуклеотидов и природных нуклеиновых кислот. В упорядоченном состоянии молекула дезоксирибонуклеиновой кислоты состоит из двух спирально переплетенных цепей. Кристаллографическая структура, определенная Криком и Уотсоном [66], допускает только один способ образования пар гетероциклическими основаниями, входящими в состав каждой из этих цепей. Анализ состава нуклеиновых кислот показывает, что концентрация пуриновых оснований равна концентрации пиримидиновых оснований поэтому образование пар через водородную связь, по статистическим соображениям, возможно только между адени-ном (А) и ТИМИНОМ (Т), и между гуанином (Г) и цитозином (Ц). При плавлении цепи разделяются и переходят в беспорядочно свернутое состояние. [c.134]

    При нагревании растворов природной рибосомной РНК или РНК некоторых вирусов, например вируса табачной мозаики (ВТМ) (стр. 152), наблюдаются такие же, хотя и менее четко выраженные, изменения. Это говорит о том, что в некоторых местах цепь РНК сгибается на себя таким образом, что пары оснований сближаются и соединяются водородными связями, образующимися между аденином и урацилом и между гуанином и цитозином (фиг. 20). Поскольку сегменты цепи, сближающиеся таким путем, могут оказаться не точно комплементарными, образование пар облегчается тем, что некоплементарные участки образуют выступающие петли (буква X на фиг. 20). Как показал рентгеноструктурный анализ, те участки молекулы, в которых цепь РНК сгибается на себя, имеют спиральное строение. Таким образом, молекула РНК представляет собой, по-видимому, полинуклеотид-ную цепь, некоторые участки которой имеют форму коротких и неполных спиралей. Б этих участках образуются пары оснований [c.56]

    Хорошо известно (см., например, [8—11]), что молекулы биополимеров в растворе могут обладать различными конформациями в зависимости от температуры, состава растворителя, концентрации водородных и других ионов в нем. Так, молекулы ДНК и синтетических полинуклеотидов в растворе могут либо иметь структуру двойной спирали, стабилизуемой внутримолекулярными водородными связями и силами ван-дер-ваальсового взаимодействия (диполь-дипольными и дисперсионными), действующими между гидрофобными группами, либо находиться в конформации статистического клубка, в которой отсутствует упорядоченная система внутримолекулярных водородных связей. Синтетические полипептиды, в том числе полипептиды, несущие ионизуемые группы, как например поли-Ь-глутаминовая кислота, поли-Ь-ли-зин, также могут находиться либо в стабилизуемой внутримолекулярными водородными связями и ван-дер-ваальсовыми силами спиральной конформации, либо в конформации клубка. Глобулярные белки обладают компактной структурой, стабилизованной гидрофобными взаимодействиями и характеризующейся в ряде случаев наличием спиральных областей при денатурации компактная структура разрыхляется, спиральные области разрушаются. [c.19]

    Только что описанный метод — изучение кинетики ферментативного гидролиза полинуклеотидов — применяется в основном для определения числа цепей в структуре [296, 297[. Метод основан на том, что одноцепочечная структура будет расщепляться ири гидролизе хотя бы по одной межнуклеотидной связи, в то время как для расщепления двухцепочечной структуры необходимо, чтобы разрыв произошел, по крайней мере, в двух местах. Если предположить, что существование индукционного периода при понижении молекулярного веса не является результатом первоначального разрыва водородных связей в особых участках молекулы, то с помощью кинетики гидролиза можно различить одно-, двух-, трехцепочечные структуры или структуры с большим числом цепей. Далее, результаты, полученные при действии панкреатической ДНК-азы на ДНК из зобной железы теленка, показали, что минимальное число нуклеотидов между разрывами в двух цепях, при котором сохраняется двухтяжная структура, равно примерно шести. Отсюда ясно, что для того чтобы молекулярный вес ДНК уменьшался, ферментативное расщепление каждой из цепей должно происходить внутри участка из шести нуклеотидных пар (рис. 8-26). [c.600]

    В последующих многочисленных работах [32—35] количественные оценки, сделанные Де Во и Тиноко, неоднократно критиковались, в частности все авторы указывали на недопустимость приближения точечных диполей и проводили учет кулоновских взаимодействий, центрируя заряды ка атомах оснований. Корректность той или иной параметризации для различных составляющих свободной энергии полинуклеотида и в настоящее время не может быть доказана с определенностью. Между тем основные идеи были высказаны именно Де Во и Тиноко и ими же теоретически было установлено наличие сильных стэкинг-взаимодей-ствий, стабилизирующих структуру однотяжевых и двухтяжевых полинуклеотидов, в то время как водородные связи, на которых основывалась ьюдель Уотсона и Крика, играют второстепенную роль. Анализируя результаты расчетов различных авторов, можно от.метить, что хотя между ними нет количественного согласия, качественный вывод Де Во и Тиноко о доминирующей роли стэ-кинг-взаимодействий в стабилизации конформаций дикулеозид-фосфатов, олигомеров, а также однотяжевых и двухтяжевых полинуклеотидов разделяется всеми авторами. [c.412]

    Исследование нуклеиновых кислот стало в последнее десятилетие одной из наиболее заманчивых областей в молекулярной биологии. С химической точки зрения как дезоксирибонуклеиновая кислота (ДНК), так и рибонуклеиновая кислота (РНК) являются полинуклеотидами, основное звено которых состоит из фосфатной группы, сахара (рибозы или дезоксирибозы) и основания (пуринового или пиримидинового) основная цепь полимера представляет собой фосфоэфир, причем на одно повторяющееся звено приходится шесть атомов цепи в соответствии с моделью двойной спирали, предложенной Уотсоном и Криком [106]. В ДНК две антипараллельные цепи полинуклеотидов завернуты в спираль и соединены друг с другом водородными связями, образующимися между гетероциклами оснований. Макромолекула РНК представляет собой однотяжную спираль, вторичная структура которой определяется внутримолекулярными взаимодействиями. Полагают, что наиболее устойчивой из нескольких возможных структур является двутяжная спираль, образуемая участками одной и той же макромолекулы, подобная спирали ДНК, но участки с некомплементарными основаниями на периферии спирали образуют петли 1107, 108]. Для того чтобы лучше понять вторичную структуру нуклеиновых кислот, были приготовлены синтетические полинуклеотиды. Эти модельные соединения широко исследованы почти теми же средствами, что и синтетические полипептиды, моделирующие структуру белков. [c.118]

    Крика. По этой модели молекула ДНК состоит из двух очень тош<их длинных цепей, закрученных правильными витками вокруг одной общей для них оси в двойную спираль (она похожа на электрический шнур, состоящий из двух переплетающихся проводов). В 1969 г. в Калифорнийском университете (США) при огромном увеличении удалось получить электронно-микроскопический снимок, на котором хорошо видны обе сппрали молекулы ДНК (рис. 54). В бактериальной клетке длина молекул ДНК достигает 1 см, а в клетке человеческого тела более 1 м. Каждая из двух цепочек представляет собой полинуклеотид, т. е. полимер, в котором остатки сахара двух соседних нуклеотидов связаны фосфатными группами. Между собой такие полинуклео-тидные цепочки соединены азотистыми основаниями. При этом пуриновые основания, состоящие из двух колец, связаны слабыми водородными связями с пиримидиновыми основаниями, состоящими из одного кольца. Этими же связями удерживаются вместе две цепи всей молекулы. [c.143]


Смотреть страницы где упоминается термин Водородные связи в между полинуклеотидами: [c.201]    [c.527]    [c.312]    [c.119]    [c.108]    [c.119]    [c.355]    [c.287]    [c.293]    [c.526]    [c.608]    [c.86]    [c.165]    [c.189]    [c.19]   
Ферменты Т.3 (1982) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Полинуклеотиды

Связь водородная, Водородная связь



© 2024 chem21.info Реклама на сайте