Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбент полимерный

    Для разделения газообразных углеводородов часто применяют пористые полимерные адсорбенты. Полимерные адсорбенты позволяют разделить та кже смеси серосодержащих газов в присутствии СО и СО2. [c.66]

    Кроме рассмотренных выше минеральных адсорбентов, в газовой хроматографии применяют полимерные адсорбенты Полимерные адсорбенты имеют приблизительно такую же термостабильность, что и [c.187]


    В процессе работы установки активность угля постепенно снижается вследствие накопления в порах адсорбента полимерных продуктов. [c.62]

    Среди твердых отходов большое место занимают отходы производства полимерных материалов, изношенные шины и другие резиновые изделия, активный уголь, иониты и другие адсорбенты, смолы, тяжелые металлы, их соли и оксиды, сульфиды сульфаты, алюминийсодержащие отходы. [c.112]

    Водные дисперсные системы и увлажненные пористые тела составляют значительную часть материалов и продуктов естественного и искусственного происхождения, с которыми имеет дело техника и химическая технология. К ним относятся, например, адсорбенты и катализаторы, полимерные, строительные и конструкционные материалы, горные породы, почвы и грунты, биологические системы, пищевые, текстильные и сельскохозяйственные продукты. Физико-химические и механические свойства этих дисперсных систем зависят от содержания и свойств удерживаемой ими влаги. Кинетика массообменных процессов, составляющих основу многих технологий, определяется подвижностью и энергией связи влаги с твердой фазой. [c.4]

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Например, при адсорбции бензола как стандартного вещества на полимерном угле САУ характеристическая энергия Е = = 27,4 кДж/моль, а на молекулярно-ситовом угле М5С-5А Е = = 30,5 кДж/моль. Следуя приведенному соотношению (2.1.8), определяем критическую температуру адсорбированной фазы бензола, которая при адсорбции на САУ будет равна 1063 К и прн адсорбции на угле М5С-5А составит 1120 К. Если же бензол адсорбируется на цеолите NaX, то характеристическая энергия равна 37 кДж/моль и, следовательно, Гкр= 1237 К. Так как значения теплот адсорбции определяются свойствами как адсорбента, так и поглощаемого вещества, то и критическая температура адсорбированной фазы существенно зависит от типа адсорбента. Существование критической температуры адсорбата, которая значительно превышает критическую температуру объемной фазы адсорбтива, подтверждает обнаруженный экспериментально во многих работах факт, что изостеры адсорбции в координатах 1п р — не имеют никакого излома при переходе через [c.31]

    При введении адсорбентов в водные растворы ПАВ молекулы ПАВ адсорбируются на границе вода — твердая поверхность. Согласно правилу Ребиндера при адсорбции ПАВ разность полярностей между адсорбентом и растворителем уменьшается. Все полярные гидрофильные поверхности адсорбируют ПАВ из неполярных и слабополярных жидкостей. Неполярные сорбенты, такие, как уголь или некоторые полимерные материалы, наоборот, хорошо адсорбируют ПАВ из полярных жидкостей. [c.41]

    Для хроматографического разделения смесей названных газов, а также изотопов необходимы сильные адсорбенты, обладающие специфическими свойствами. К ним следует отнести активированные угли, некоторые марки силикагелей и алюмогелей, а также молекулярные сита и пористые полимерные адсорбенты. Наиболее часто легкие газы разделяют при достаточно низких температурах, порядка -—70° С и ниже. [c.65]

    Начиная с конца 50-х годов интерес к жидкостно-адсорбционной хроматографии резко возрос, так как появились высокочувствительные методы детектирования, новые селективные полимерные адсорбенты, была разработана аппаратура, способная работать при высоких давлениях. Все это привело к резкому увеличению скорости процесса хроматографирования, эффективному разделению смеси веш,еств, близких по свойствам, и к возможности работы в области малых концентраций, а следовательно, в области прямолинейного участка изотермы адсорбции. [c.68]

    К числу полимерных пористых материалов, применяемых в качестве адсорбентов, относится тефлон (политетрафторэтилен). Его получают полимеризацией тетрафторэтилена в присутствии перекисных катализаторов, причем наряду с упорядоченным кристаллическим строением образуются волокнисто-аморфные участки. Тефлон обладает относительно низкой удельной поверхностью, доходящей до 10 м -1г. [c.109]

    В промышленности производства полимерных материалов адсорбенты используют в качестве активных наполнителей, придающих изделию повышенную прочность. Так, изделия, изготовленные из саженаполненной резины, почти в 10 раз прочнее, чем изделия, изготовленные из резины, наполненной нейтральными наполнителями (см. разд. III.14). [c.129]

    Тип I — неспецифические неполярные адсорбенты (насыщенные углеводороды — кристаллические, полимерные или нанесенные в виде плотных пленок на адсорбенты-носители, а также химически инертные поверхности атомных решеток, в частности, базисная грань графита). Межмолекулярное (не химическое) взаимодействие адсорбентов первого типа с молекулами всех выделенных выше групп остается неспецифическим. [c.13]

    Органические пористые углеводородные сополимеры и пористые сополимеры с полярными функциональными группами. Объем и размеры пор, термостойкость. Адсорбция и хроматография паров воды и органических веществ на пористых полимерах с разными функциональными группами. Оптимизация пористости и химии поверхности полимерных адсорбентов для конкретных применений. Сопоставление с неорганическими адсорбентами. [c.111]

    Выбор оптимальной пористости полимерных адсорбентов для применений в хроматографии. Аминированные макропористые сополимеры СТ с ДВБ могут с успехом применяться для адсорбции газов кислого характера, например СОг и ЗОг. Адсорбция СОз и 80г, помимо химии поверхности (см. ниже 6.3), зависит от пористости полимеров. Это видно из рис. 6.5, на котором приведены результаты фронтальной хроматографии, т. е. выходные кривые СО2, выражающие рост концентрации СО2 за находящимся в ко- [c.119]

    Вопрос о повышении концентрации функциональных групп в полимерном адсорбенте, активных по отношению к полярным молекулам адсорбатов, связан с вопросом об их доступности, зависящей от пористости полимера. С одной стороны, для повышения специфической адсорбции в пористый полимер надо ввести возможно большее количество соответствующих активных функциональных [c.120]

    У сплошных не слишком малых частиц твердого тела, как кристаллических, так и аморфных, доля поверхностного слоя невелика. Однако она может быть увеличена на несколько порядков, если твердое тело имеет пористую структуру. Такими телами являются, например, активированный уголь и силикагель. Первый получается путем сжигания древесины при малом доступе воздуха. При этом основная масса древесины обугливается. Однако часть материала сгорает и улетучивается, оставляя многочисленные поры. Силикагель получается обезвоживанием геля кремниевой кислоты. Как уже указывалось в 8.5, гель представляет собой сетку, образованную полимерными молекулами, в данном случае молекулами кремниевой кислоты, с захваченными в большом количестве молекулами воды. У таких материалов поверхность может достигать сотен квадратных метров па грамм адсорбента, и это делает возможным адсорбцию значительного количества газа или растворенного вещества. [c.315]


    На фоне этих частичных успехов особенно интересен метод адсорбционного расщепления, разработанный С. В. Рогожи-ным, В. А. Даванковым и сотрудниками [72]. В полимерный носитель вводят остатки оптически активной аминокислоты. Через колонку, заполненную таким адсорбентом, пропускается раствор солей меди или другого металла-комплексообразова-теля при этом металл образует комплекс с закрепленной на носителе аминокислотой. Через подготовленную таким образом колонку пропускают раствор рацемической аминокислоты Ь 0. За счет комплексообразования с участием иона меди и закрепленной на носителе оптически активной аминокислоты 2 могут образоваться два диастереомерных комплекса  [c.110]

    При работе в газожидкостном варианте, а также с полимерными адсорбентами возрастает эффективная летучесть НФ (концентрация паров и летучих продуктов деструкции). Высокая летучесть ведет к постепенному уменьшению количества НФ, изменению разделительной способности и параметров удерживания, размеров и формы пиков, сокращению срока службы колонки. Введение в детектор с потоком газа-носителя паров НФ вызывает появление значительного фонового сигнала, непроизводительно [c.79]

    И. способствует улучшению однородности смесей (иапр., произ-во СК) ускорению и повышению глубины протекания гетерог. хим. р-ций (в произ-ве минер, удобрений, ультрамарина и др.) повышению интенсивности сочетаемых с ним др. технол. процессов (перемешивание, сушка, обжиг, хим. р-ции) снижению применяемых т-р и давлений (напр., при варке стекла) улучшению физ.-мех. св-в и структуры материалов и изделий (твердые сплавы, бетон, керамика, огнеупоры и т. п.) повышению красящей способности пигментов и красителей, активности адсорбентов и катализаторов переработке полимерных композиций, включающих высокодисперсные наполнители (напр., сажу, слюду, хим. и иные волокна), отходов произ-ва, бракованных и изношенных изделий (резиновые шины, термо- и реактопласты и др.) и т. д. [c.180]

Рис. 23.26, Типичные формы хроматографических подвижностей полимерных фракций на адсорбентах для ТСХ. Рис. 23.26, Типичные <a href="/info/39292">формы хроматографических</a> <a href="/info/476553">подвижностей полимерных</a> фракций на адсорбентах для ТСХ.
    Синтетические пористые полимерные материалы, образовавшие свой класс адсорбентов, были впервые синтезированы в конце 50-х годов. Отличительной особенностью синтетических полимерных материалов является возможность изменять их пористую структуру в очень широких диапазонах при одном и том же химическом строении. [c.172]

    В последнее время для исследования толщины поверхностного адсорбционного слоя макромолекул стали применять метод эл-липсометрии, основанный на отражении поляризованного света от покрывающей поверхность адсорбента полимерной пленки. [c.12]

    В настоящее время для регенерации [a eл применяют следующие процессы отстаивание от механических примесей и воды фильтрование, коагуляцию и отстаивание отгон топливных фракций обработку масла серной кислотой, очистку или доочистку адсорбентами нейтрализацию известковым молоком или водным раствором соды кроме того, применяют экстрагенты (пропан, фурфурол). Стремятся также исключить сернокислотную очистку отработанных масел из-за образования большого количества кислого гудрона и затруднений при регенерации масел с высоким содержанием присадок, особенно полимерных. На одном из регенерационных заводов заключительным процессом является гидроочистка средневязкой масляной фракции. До гидроочистки из регенерируемого масла должны быть удалены металлы — дезактиваторы катализатора. Нередко в конце или перед последней операцией масло разделяют вакуумной перегонкой и ректифи ка-цией на 2—3 фракции разной вязкости. [c.407]

    Твердые синтетические полимерные сорбенты типа пенополиуретана с хорошей плавучестью не поглощают воду, но способны удерживать до 2-5 - кратного объема углеводородов. Особый иктсрсс представляют адсорбенты растительного происхождения (торф, опилки), имеющие высокую адгезионную способность и поглощающие нефть до 3 г/г ядсорбента [c.159]

    В промышленности, в лабораторной, препаративной и аналитической практике используются многочисленные адсорбенты, различающиеся по химической природе и по пористой структуре. Назовем прежде всего минеральные, углеродные и полимерные адсорбенты. [c.230]

    Полимерные пленки на поверхности адсорбента-носителя можно создать также полимеризацией адсорбированного мономера. Таким путем получают на силохроме модифицирующий слой полимера мелона. Этот слой получают обработкой силохрома раствором мономера меламина в воде. После выпаривания воды пропитанный меламином силохром нагревают. При этом происходит полимеризация меламина в мелон. Строение звена этого полимера, по-видимому, соответствует конденсированному амино- 5-триазин у  [c.85]

    Набухающие полимеры и пористые полимеры с жестким скелетом. Давно известны многие органические набухающие сорбенты— природные, например крахмал и целлюлоза, и синтетические. Среди последних широкое применение в аналитической практике для препаративного выделения различных ионов и устранения жесткости воды приобрели набухающие в водных растворах полимеры, содержащие функциональные группы, способные к ионному обмену — иониты. В сухом состоянии такие полимеры практически не имеют пор. Если эти полимерные сорбенты содержат полярные функциональные группы, например гидроксильные (целлюлоза, крахмал), амино- (многие аниониты) и сульфогруппы (катиониты), то они сорбируют пары таких полярных веществ, как спирты и особенно вода. Эта сорбция сопровождается набуханием полимера, что проявляется как в увеличении его объема, так и в обширном сорбционном гистерезисе. В отличие от капиллярно-конденсационного гистерезиса в адсорбентах с жестким скелетом, начинающегося при достаточно высоких относительных давлениях пара после обратимой начальной части изотермы адсорбции (см. рис. 3.4, 3.5 и 5.2), сорбционный гистерезис в органических набухающих сорбентах простирается вплоть до относительного давления пара р1ро = 0. [c.112]

    Второй путь получения пористых полимерных адсорбентов с полярными функциональными группами состоит в химическом модифицировании поверхности уже готовых пористых полимеров, подобно тому, как это делается при органохимическом модифицировании неорганических пористых полимеров (см. лекцию 5). Сюда относится прививка к углеводородному остову сополимера таких полярных функциональных групп, как ОН, [c.115]

    Гидроксид алюминия А1(0Н)з — полимерное соединение. Он имеет слоистую кристаллическую решетку. Каждый слой состоит из октаэдров А1(0Н)е (рис. IX. 10) между слоями действует водородная связь. Получаемый по обменной реакции гидроксид алюминия — студенистый белый осадок, хорошо растворимый в кислотах и щелочах. При стоянии осадок стареет и теряет свою химическую активность. При прокаливании гидроксид теряет воду и переходит в оксид А1гОз. Одна из форм дегидратированного гидроксида — алюмогель используется в технике в качестве адсорбента. [c.268]

    Важнейшие представители высокодисперсных систем с непористыми частицами — обычная сажа, графитированная сажа, частично перешедшая в графит в результате термической обработки, белая сажа, представляющая собой высокодисперсный 5102, получаемая путем гидролиза 51014 или 51р4 в атмосфере водяного пара. Гидролиз в особых условиях приводит к образованию дыма, состоящего из сферических частиц размером 10 нм. от дым, оседая, образует тончайший порошок, так называемый аэросил. Такие порошки широко используют в качестве адсорбентов, катализаторов, а также наполнителей в полимерных материалах. [c.175]

    Для очнсткн сточных вод и отработанных газов методом адсорбции разработаны специальные активированные угли, отличающиеся высокой адсорбционной емкостью ио отнощению к фенолам, высокой стабильностью н стойкостью к истиранию [27]. Недавно разработан адсорбент на основе полимерных материалов, обладающий такой же высокой эффективностью в извлечении фенола и подобных соединений из стоков и дающий возможность получать очищенные воды с содержанием фенола менее 1 ч. на млн. [28]. Адсорбентами могут служить также оксид алюминия, силикагель и цеолиты. Сточные воды и отработанные газы иредварительно очищают от твердых веществ. Адсорбция может сонроволедаться хемосорбцией и капиллярной конденсацией. [c.90]

    Существенные структурные изменения а полимере возникают лишь тогда, когда вводимые твердые частицы достаточно сильно взаимодействуют с ним. Хорошее смачивание наполнителя полимером является обязательным условием. Твердый тонкодисперс-ный наполнитель часто играет роль адсорбента, на поверхности которого адсорбируются молекулы полимера. При этом образуются высокоориентированные адсорбционные слои, способствующие попышени[0 механической прочности полимерного материала. В ряде случаев при взаимодействии полимера н наполнителя обра--зуются химические соединения. Размер частиц наполнителя должен находиться в известном соответствии с размерами струкгурных образований в полимере. [c.235]

    Адсорбенты. Осн адсорбент-кремнезем (силикагель), гидроксилированный или химически модифицированный, используют также А12О3, углеродные адсорбенты, полимеры, содержащие ионогенные, комплексообразующие группы или гр>ппы, способные к специфич взаимод с биологически активными в-вами Размер частиц силикагеля в аналит колонках 3-10 мкм, в препаративных-20-70 мкм Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки Совр аналит колонки длиной 10-25 см, заполненные силикагелем с размером частиц 5 мкм, позволяют разделить сложные смеси из 20-30 компонентов При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление и для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3) 10 Па Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются В последнее время разработаны механически прочные густосетчатые полимерные сорбенты макропористой структуры, приближающиеся по своей эффективности к силикагелям Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сферич сорбенты, к-рые дают более проницаемую упаковку Внутр структура частицы силикагеля представляет собой систему сообщающихся каналов Для Ж х используют сорбенты с диаметром пор 6-25 нм и уд пов-стью 600-100 м г [c.153]


Смотреть страницы где упоминается термин Адсорбент полимерный: [c.96]    [c.65]    [c.175]    [c.187]    [c.68]    [c.48]    [c.113]    [c.119]    [c.121]    [c.166]    [c.159]    [c.127]    [c.114]    [c.454]    [c.151]    [c.173]   
Химия привитых поверхностных соединений (2003) -- [ c.214 ]




ПОИСК







© 2024 chem21.info Реклама на сайте