Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы содержание в природных

    В настоящее время в природных водах нормируется содержание около 900 органических соединений [1]. Среди существующих аналитических методов наиболее перспективны для решения этой задачи методы хроматографии. Однако предельно допустимые концентрации в водах большинства органических загрязнений лежат ниже предела обнаружения их этими методами, поэтому необходимым этапом является концентрирование, обычно сорбционное. Осуществление сорбционного процесса не требует сложного аппаратурного оформления и во многих случаях позволяет достичь необходимые степени концентрирования. Целью сообщения является исследование условий, а также расчет сорбционного концентрирования органических веществ на примере фенола с последующим анализом концентрата методом газовой хроматографии. [c.149]


    Поскольку спирты не обладают ингибирующим действием, природные ингибиторы в топливах нафтенового основания представляют собой, очевидно, фенолы. Следует отметить, что в дифференциальных спектрах остатка смеси фракций и фракции 3 обнаружена довольно широкая полоса, которую можно отнести к карбонильной группе сложных эфиров (v=1740 см ). В дифференциальном спектре остатка, определенного относительно исходного топлива эта полоса отсутствует, т. е. по содержанию сложных эфиров топливо и остаток различаются мало. Вместе с тем по окисляемости топливо и остаток существенно различны. Кроме того, интенсивности пика, соответст- [c.85]

    Для оценки содержания в природных и сточных водах индивидуальных органических соединений все чаще используется газовая и тонкослойная хроматография. Разрабатываются методы хроматографического определения таких важных примесей, как пестициды, нефтепродукты, отходы целлюлозно-бумажной и химической промышленности. Применяются и химические методы анализа органических компонентов к сожалению, методы анализа разбавленных водных растворов органических веществ развиты пока плохо нужна схема систематического анализа смесей органических соединений в водах. Для онределения фенолов, пиридина, анилина существуют люминесцентные методы. Минеральные компоненты чаще всего определяют спектральными, электрохимическими и химическими методами. Для определения фторидов удачно использовали фторид-селективный электрод делаются попытки применить ионоселективные электроды для определения и других галогенидов, цианидов, а также сульфидов. [c.116]

    Каплин В. Т., Фисенко Н. Г. Количественное определение фенолов в природных водоемах при их содержании 0,001 мг л и выше. Гигиена и санитария , № 8, 1960. [c.236]

    Метод с предварительной адсорбцией на активированном угле дает возможность определять очень малые содержания фенолов в природных загрязненных водах, поскольку через уголь можно профильтровать любое количество воды. [c.190]

    Сушествование и роль ММВ с участием протона в нефтяных системах доказаны экспериментально [23,29,69,75,141,143,154...157]. Так, в асфальтенах природных битумов и нефтей значительная часть кислорода входит в состав ОН-групп, почти полностью участвующих в образовании комплексов с Н-связью и не исчезающих даже при очень больших разбавлениях четыреххлористым углеродом [70,75,141,157]. Интенсивность Н-связей возрастает с увеличением содержания кислорода во фракциях асфальтенов или с ростом их полярности [141]. Аналогично ведут себя и КН-группы. Многие гетероорганические соединения битума, в частности, содержащие кетонные, хинонные, карбоксильные и циклические амидные группы, ведут себя как Н-акцепторные основания и активно участвуют в образовании Н-связи [141,157]. Асфальтены и их групповые компоненты при взаимодействии с фенолом и двухатомными спиртами проявляют свойства Н-акцепторных оснований и образуют Н-связи с энтальпией 23-24 кДж-моль- [141,154] не исключается образование и более слабых Н-связей. Концентрация Н-акцепторных оснований в асфальтах не менее 2 ммоль-г а окисление воздухом при повышенных температурах вызывает увеличение их Н-акцепторной основности [154]. Метилирование, ацетилирование и другие реакции связывания активного водорода значительно увеличивают Н-акцепторную основность асфальта, что указывает на то, что в асфальте Н-кислоты и Н-основания находятся в Н-связанном состоянии [141,143,154]. Не исключается возможность образования внутримолекулярных Н-связей [141,143,155]. [c.66]


    Содержание фенолов определяют по интенсивности окраски раствора, сравнивая ее с окрасками шкалы стандартов. Можно также измерять светопоглощение в фотоколориметре и рассчитывать содержание фенолов по калибровочным графикам. Необходимо иметь в виду, что интенсивность окраски в значительной степени зависит от строения фенолов, и поэтому стандартные растворы нужно готовить из тех же фенолов, какие содержатся в исследуемой пробе. Реакции очень чувствительны и позволяют анализировать фенолы в концентрации до 5-10 г/л. Однако в ряде случаев, например при анализе фенолов, содержащихся в природных водоемах, где допустимая концентрация составляет всего 0,001 мг/л, чувствительность колориметрических методов приходится повышать специальными приемами. Так, при анализе с 4-амино-антипирином окраску можно усилить за счет экстракции окрашенного продукта хлороформом. Ю. Ю. Лурье [54] предложил сорбировать фенолы из очень разбавленных растворов активированным углем с последующей их десорбцией раствором щелочи, повышая таким образом концентрацию фенолов до приемлемой для обычного колориметрического метода. [c.48]

    Природные и сточные воды. Особенность объектов окружающей среды и, в частности, вод заключается в том, что они, как правило, многокомпонентные. В природных и сточных водах содержится большое число разнообразных неорганических, органических, органоминеральных веществ природного и техногенного происхождения. Так, в природных водах России нормируется более тысячи компонентов, в основном органических. Вода может содержать эти вещества как в истинно растворенном состоянии, так и в коллоидном и в виде суспензий и эмульсий. Из-за различной токсичности тех или иных форм соединений одного и того же элемента (разный состав комплексов, степень окисления элемента и др.) необходимо не только определять валовое содержание веществ, но и проводить вещественный анализ. Особое значение приобретает изучение состояния тяжелых металлов в природных водах, изучение их подвижности. Большую опасность дпя водоемов представляют нефтепродукты, пестициды, попадающие со стоками с полей за счет десорбции из почв, фенолы, присутствующие в бытовых сточных водах и в разнообразных производственных стоках. [c.466]

    Результаты проведенных опытов показали, что в присутствии растворителей и алюмосиликата возможно перевести в растворимое состояние до 60% керогена, причем полученная смола отличается низким содержанием фенолов и других кислородных соединений, а также непредельных соединений. Фракционный состав полученной смолы указывает на содержание как легких, так и тяжелых фракций. Метановые, нафтеновые углеводороды простого строения содержатся в легких фракциях, высшие же фракции содержат почти исключительно гибридные углеводороды полициклического строения. Таким образом, полученные из керогена продукты по физическим и химическим свойствам близки к природным ароматическим нефтям  [c.12]

    Для повышения содержания пленкообразующего (благодаря этому м. б. уменьшено число слоев лакокрасочного материала при получении покрытий сравнительно большой толщины), а также для улучшения декоративных и эксплуатационных свойств покрытий (блеска, адгезии к подложке, твердости) Н. л. и э. модифицируют хорошо совместимыми с коллоксилином синтетич. и природными смолами. Наиболее часто для этой цели используют след, продукты 1) тощие и средней жирности высыхающие глифталевые и пентафтале-вые смолы (см. Алкидные смолы) 2) феноло-алтдегидные (модифицированные канифолью), циклогексанон- и мочевино-формальдегидные смолы 3) эпоксиэфиры, получаемые взаимодействием эпоксидных и алкидных смол такие материалы наз. нитроэпоксидными  [c.516]

    Существование такого взаимодействия, очевидно, необходимо для координирования ростовых процессов. Известно, что у этиолированных растений содержание ингибиторов практически ничтожно. В таком растении происходят в основном процессы растяжения осевых органов, а листья и боковые побеги недоразвиты. Свет активирует синтез природных ингибиторов, и прежде всего фенолов, т. е. осуществляет регуляцию функционирования метаболических вилок . Образование этих соединений начинается в связи с активацией функций хлоропластов. [c.212]

    Поливинилацетатные клеи-25-70%-ные р-ры по-ливиш1лацетата в орг. р-рителях, напр, в спиртах, кетонах, эфирах, метиленхлориде, и его водные дисперсии (содержание полимера 35-60%). Вьшускают в виде вязких жидкостей или паст. Могут содержать пластификаторы, природные и синтетич. смолы (канифоль, шеллак, поливинилбутираль, феноло-формальд. или алкидные смолы), антисептики (пентахлорфенолят Na), а пастообразные клеи-наполнители (кварцевая мука, мел, тальк), дисперсные клеи-стабилизаторы (поливиниловый спирт), в герметичной таре можно хранить при 0-40 °С не менее 1 года. Обладают хорошей адгезией к разл. материалам, дешевы, водные дисперсии негорючи и безвредны. Клеевые прослойки работоспособны до 40 °С, топливо-, масло- и атмосферостойки, но имеют низкие водостойкость и прочность при длит, нагружении. Применяют для склеивания бумаги, пластмасс, древесины, тканей, кожи, металлов в разл. отраслях пром-сти, стр-ве и быту. [c.408]


    Разработан метод определения муравьиной кислоты в природных водах [21]. Закон Бера соблюдается до содержаний формиата 20 мкг, чувствительность определения 1 мкг, не мешают фенол при содержании более 500 мкг/л и 10-кратный избыток органических кислот. В работе [23] отмечено, что восстановление формиата протекает всего на 30%. Воспроизводимость метода невысока, ошибка может достигать 30% [24]. Определению муравьиной кислоты мешает формальдегид, его следует отделять или связывать, например, фенилгидразином [23]. Разработан метод, основанный на восстановлении нитрата серебра до металлического серебра в слабокислом буферном растворе [24] 5 [c.92]

    Никак нельзя согласиться с автором в том, что в природных относительно чистых водах содержание летучих органических веществ так мало, что им можно пренебречь, проводя предварительное упаривание пробы до малого объема. Многочисленные анализы природных вод, проведенные в СССР в Новочеркасском гидрохимическом институте, и питьевой воды в лаборатории института ВОДГЕО, показали, что количества летучих компонентов в них — альдегидов, сложных эфиров, низкомолекулярных кислот, летучих фенолов, низкокипящих углеводородов и т. п. составляет значительную часть общего содержания в. них органических соединений. [c.66]

    Методика накопления заключалась в адсорбции органического вещества на активированном угле марки ОУБ-кислый с последующей десорбцией ацетоном и щелочью. В составе выделенного органического вещества были определены углеводы, фенолы, пуриновые и пиримидиновые основания (аминопроизводные гетероциклических соединений, входящие в состав нуклеопротеидов — специфических веществ живых клеток), различные аминокислоты (гликоколь, лизин, аспарагин и др.), уроновые кислоты, сахара, фульвокислоты, ароматические вещества, порфирины и др. [40, 41]. Спектры поглощения в инфракрасной области указали на присутствие таких функциональных групп как ОН, СО, СОС, СП. В результате кислотного гидролиза выделенного органического вещества было получено смолообразное вещество, представляющее собой продукт конденсации в кислой среде природных органических соединений подземных вод. Содержание углерода в этом продукте оказалось низким — 35—40%- Это может быть объяснено [c.73]

    В экстрактах, получаемых при настаивании с водой листьев, коры и древесины растений, наряду. с собственно дубильными веществами обнаруживаются фенолы, галловая кислота, кате-хины. Так, Е. Д. Ален [127] и Р. Д. Хок [138] в водохранилищах, расположенных в лесных районах, наблюдали увеличение содержания в воде фенолов вследствие разложения деревьев и опавших листьев. Наличие в поверхностных водах низших фенолов природного происхождения установлено для многих водоемов Чехословакии [132]. [c.16]

    При полукоксовании целлюлозный уголь давал 10—15% первичной смолы, богатой фенолами. При коксовании этого угля получалось 4—5% высокотемпературной смолы с содержанием характерных для нее ароматических соединений — бензола, нафталина и антрацена. Следовательно, получаемые при термической обработке целлюлозного угля продукты, кроме кокса, были обычными, как и для природных углей. Различие было только в твердом остатке спекшегося кокса не получалось. [c.94]

    Каплин В. Т., Фесенко Н. Г. Колориметрическое определение фенолов с помощью диметиламиноантипирина (пирамидона) при содержании их в литре 0,001 мг и выше. В кн. Современные методы анализа природных вод . М., Изд. АН СССР, 1962, с. 136—140. [c.267]

    Опадение листьев в осенний период предшествует или сопутствует процессу вхождения растений в состояние покоя. При этом в семенах однолетних и многолетних растений, а также в ветвях и почках многолетних растений происходит резкое снижение содержания природных ростовых веществ и накопление ингибиторов роста. Резко возрастает содержание фенолов, особенно в почках и клубнях (Реггу, 1971 Jangaard et al., 1971). Рассмотрим работы, выполненные в 40—60-х годах и посвященные общим закономерностям ингибиторной теории регуляции роста. [c.138]

    При очистке такого керосина с высоким содержанием природных фенольных соединений возникает проблема дезодорации. Поэтому, после очистки керосин промывают 1/5 объема 10%-ного едкого натра, а затем водой для удаления следов щелочного фенолята и повышения устойчивости цвета. Заметим, что эта щелочная отмывка совершенно необходима для керосинов, содержащих природные фенолы, как, например, для осветительного зубаирского керосина. [c.355]

    По другому колориметрическому методу [177] содержание 24М6В определяют окислением присадки ферроцианидом калия, и. после сочетания полученного раствора с диазореактивом проводят колориметрирование. Предварительно присадку отделяют хроматографически на окиси алюминия с последующим вытеснением бензина хлороформом и пентаном. Пентан удаляет с адсорбента следы бензина и хлороформа. Присадку 24М6В удаляют этанолом. Перед хроматографированием бензин для удаления природных фенолов промывают 10%-ным водным раствором щелочи. При наличии в бензине аминных присадок его промывают 50%-ной соляной кислотой. Если бензин окрашен, его необходимо несколько раз пропустить через активированный уголь до полного удаления окраски. После хроматографирования от элюата с присадкой отгоняют пентан, охлаждают остаток до комнатной температуры, количественно переносят в мерную колбу емкостью 50 мл и добавляют до метки этанол. [c.201]

    Развитие производительных сил, нерациональное использование природных ресурсов в регионе привело к ухудшению гидрохимического состояния озера и его притоков, зафязнению атмосферного воздуха, развитию эрозионных процессов, дефадации живых организмов Байкала, наносится ущерб лесам. В результате хозяйственной деятельности в Байкал поступает большое количество органических веществ, фенолов, нефтепродуктов, ПАВ и других зафязняющих веществ. В районах постоянного антропогенного воздействия (Байкальский целлюлозно-бумажный комбинат, Селенгинский целлюлозно-картонный комбинат) отмечается повышенное по сравнению с фоновым содержание взвешенных и минеральных веществ, нефтепродуктов, сернистых органических веществ. В отдельных районах озера, подверженных антропогенному воздействию, обнаружены повышенные концентрации нефтепродуктов (в Баргузинском заливе), высокие значения коэффициента цветности, взвешенных веществ и амм9нийного азота (на Селенгинском мелководье). Гидробиологические исследования показали негативное влияние на качество вод озера рассеянных источников [c.274]

    Содержание в нефтях фенолов колеблется от 40 до 900 мг/л. Концентрации фенолов возрастают в ряду Сб<С7<< g< 9. В нефтях обнаружены фенол, все крезолы, ксиленолы и отдельные изомеры С9. Установлено, что соотношение между фенолами и алкилфенолами колеблется в пределах от 1 (0,3-0,4) до 1 (350- 560) и зависит от глубины залегания и возраста нефти. В некоторых нефтях идентифицирован -нафтол. Соединения типа о-фенилфенолов, находятся в связанном состоянии из-за склонности к образовангао внутримолекулярных водородных связей. При исследовании антиокислительной способности компонентов гетероорганических соединений нефти установлено, что концентраты фенольных соединений являются наиболее активными природными ингибиторами. [c.80]

    Фенолы и крезолы. Присутствующие в некоторых крекинг бен-зинах, являются природными игибиторами. Их удаление в процессе очистки Может снизить стабильность бензинов. Загер [45], например, показал, что промывание содой румынского крекинг-бензина повысило содержание потенциальной смолы с 320 до 730 лг на 100 после обработки раствором еоды. [c.323]

    Обстоятельное исследование 4-нитрофенола как фунгицида для защиты конш проведено Долларом [18], который по материалам, полученным до 1953 г., подытожил данные о биологической эффективности 4-нитрофенола. Доллар установил, что кожи, содержащие 0,2—0,3% 4-нитрофенола, даже при самых неблагоприятных условиях устойчивы к действию плесневых грибов. Эту эффективность 4-нитрофенола как фунгицида для кожи подтвердили Даль и Каплан [12]. Они проводили испытания в чашках Петри, помещенных в тропической камере и в природных условиях (см. табл. 19 и 20). Испытания показали, что требуемая концентрация испытанного фунгицида 0,3%. Орлита [21] рекомендует для консервирования ншровапной яловочной юфти применять 4-нитрофенол, 0,25% от веса кожи, для хромовой сильно жированной юфти—0,35%. При этом для последнего вида кожи рекомендуется смесь двух веществ 0,2% 4-нитро-фенола и 0,15% пентахлорфенола (от веса кожи). Для технических кож с содержанием жира более 10% рекомендуется 0,35 4-нитрофенола или 0,30% пентахлорфенола. [c.82]

    Среди гетероатомных соединений нефти кислород по распространенности является вторым элементом после серы. Его содержание в нефтях составляет от 0,05 до 3,6 мас.%. Присутствие кислородсодержащих соединений (КС), в основном нефтяных кислот и фенолов, в топливах и маслах оказывает отрицательное влияние на их эксплуатационные свойства вследствие повышенной коррозионной активности и смолообразования. В то же время нефтяные кислоты, выделенные при щелочной очистке топлив, являются исходным сырьем для получения целого ряда продуктов сиккативов, экстрагентов металлов, пластификаторов, присадок. Являясь природными поверхностно-активными веществами, нефтяные кислоты и фенолы оказывают значительное влияние на процессы добычи и транспортировки нефти. Результаты изучения поверхностно-активных свойств этих групп соединений в сырых нефтях могут быть использованы при выборе оптимальных технологических процессов деэмульсации нефти на промыслах, выборе реагентов, являющихся вместе с нефтяными кислотами содетергентами смолопарафиновых отложений в нефтепромысловом оборудовании. [c.96]

    Эффективность действия синтетических и природных ПАВ на процесс кристаллизации твердых углеводородов, в значительной степени связанная с полярностью молекул этих веществ, количественно оценивается величиной дипольного момента. Промышленные присадки, с помощью которых можно управлять процессом кристаллизации при выделении твердых углеводородов из нефтяных дисперсий, представляют собой раствор активного вещества в нефтяном масле. Для определения дипольных моментов молекул присадок были выделены [199] активные части путем диализа с использованием тонкой резиновой мембраны по методике, предложенной в работах [200, 201], обеспечивающей достаточно высокую степень отделения присадки от масла без существенной потери самой присадки. В ИК-спектрах активной части как алкилфе-нольных, так и алкилсалицилатных присадок (рис. 3.2) имеются полосы с частотами поглощения 2980, 2870, 1460, 1380 и 730 см Они указывают на присутствие в молекулах присадок метильных и метиленовых групп, причем полоса поглощения с частотой 730 см " позволяет установить наличие в молекулах группировок —( Hj) —(п > 4). Содержание в молекулах присадок 1, 2, 4-замещенных ароматических колец подтверждает наличие полос поглощения с частотами 1600-1500, 1125-1000 и 870-830 см Широкие полосы в области s 3440 см указывают на присутствие межмолекулярно связанных гидроксильных групп, а полоса поглощения с частотой х 3610 см относящаяся к несвязанным ОН-группам, характерна для фенолов. [c.100]

    Помимо обычных оргапич. волокон (химических и природных) для иолучения У. в. могут быть использованы феноло-формалъдегидные волокна, волокна из каменноугольных и нефтяных пеков, лигнина, т. е. из веществ с большим содержанием углерода. [c.335]

    Смешивают 100 мл природной воды, анализируемой на содержание фенолов [13], с 1 мл 10%-ного раствора сульфата меди (для связывания сульфидов), подкисляют 1 мл концентрированной H2SO4 и отгоняют около 80 ил жидкости. Отгон собирают в колбу, содержащую 10 мл 0,01 М раствора NaOH, добавляют 3 мл буферного раствора (50 г NH4 I и-4 мл 20%-ного раствора NH3 разбавляют водой до объема 1 л), вводят 0,5 мл 7%-ного раствора пирамидона (N-диметиламиноантипирин) в этиловом спирте и 5 мл 30%-ного раствора Кз[Ре(СЫ)е]. Через 30 мин образовавшийся продукт экстрагируют 8 мл смеси хлороформа и ызо-ами-лового спирта (1 2 по объему). Экстракт красного цвета фильтруют и измеряют оптическую плотность, используя синий светофильтр [10]. При относительно больших количествах фенолов (0,03—0,2 г в 100 мл раствора) возможно фотометрирование без предварительной экстракции [13, 14]. [c.75]

    Летучие фенолы — чрезвычайно распространенные и опасные промышленные токсиканты, часто встречающиеся в сточных водах многих производств ПДК летучих фенолов находятся а уровне 0,001 мг/л, незначительные их количества способны загрязнить большие массы природных вод [1]. Количественное определение суммарного содержания токсичных фенольных соединений в водах осуществляют пo oбo t, включающим перегонку исследуемой воды для отделения одноатомных (летучих) фенолов, образов1ание окрашенных соединений с определяемыми веществами, экстракцию хлороформом и измерение оптической плотности экстракта на фотоэлектроколориметре или спектрофотометре [2]. [c.85]

    Пластификаторы оказывают существенное влияние на свойства смесей и вулканизатов Б -п. к. В качестве пластификаторов для Б.-н. к. используют 1) сложные эфиры (дибутилфталат, диоктилфталат, ди-бутилсебацинат и др.), к-рые применяют гл. обр. для повышения морозостойкости и эластичности вулканизатов 2) природные и синтетич. смолы (канифоль, сосновая, кумароно-инденовые и феноло-формальдегидные смолы), повышающие клейкость смесей (кумароно-1шде-новые смолы придают вулканизатам также и высокие прочностные свойства) 3) продукты нефтяного происхождения (гл. обр. высокоароматизированные), применение к-рых позволяет получать вулканизаты с высоким относительным удлинением и сопротивлением раздиру 4) различные жидкие каучуки (напр., Б.-н. к. типа хайкар 1312), олигоэфиры и др., улучшающие сопротивление резин тепловому старению. Пластификаторы с преимущественным содержанием алифатич углеводородов (напр., вазелиновое масло) находят ограниченное применение, т. к. вследствие плохой совместимости с Б.-н. к. мигрируют на поверхность резин. Количество пластификаторов не превышает, как правило, 30 мае. ч. С увеличением содержания связанного акрилонитрила совместимость Б.-н. к. с пластификаторами уменьшается. [c.155]

    Материалы на основе других эфиров целлюлозы. Используемая в лакокрасочной пром-сти этилцеллюлоза содержит 45,3—49,0% этоксильных групп вязкость ее 5%-ных р-ров в смеси спирта с бензолом (в соотношении 1 4 по массе) при 20°С изменяется в широких пределах (5—3000 мн сек1м , или спз). Для увеличения содержания пленкообразуюш его и улучшения свойств покрытий (блеска, адгезии к подложке) в состав этилцеллюлозных материалов вводят обычно феноло-или циклогексанон-формальдегидные смолы. Композиции этилцеллюлозы с природными смолами, растительными или минеральными маслами, содержащие 0,5— [c.517]

    Более распространенным промышленным катионитом, изготовляемым из менее дефицитного синтетического сырья, является сульфированный продукт конденсации фенола с формалином, выпускаемый под маркой вофатит Р. Не уступающий ему по своей химической активности катионит сульфоуголь изготовляет отечественная промышленность, используя дешевое природное сырье(плавких коксующихся каменных углей). Если в качестве исходного сырья применить некок-сующийся бурый уголь, характеризующийся обильным содержанием гуминовых кислот, то по своим свойствам полученный катионит будет отличаться от сульфоугля, приготовленного из коксующихся углей. Это различие определяется тем, что в первом случае главными активными группами, входящими в состав твердой фазы, будут карбоксильные группы, а во втором сульфогруппы. Кроме того, зерна образца, приготовленного из коксующихся углей, отличаются большей механической прочностью. [c.482]

    С внешней стороны карбены и карбоиды похожи на асфальтены, отличаясь от последних лишь более темной окраской и несколько повышенным содержанием кислорода. Сходство это распространяется также на их химические свойства все три рода веществ дают аналогичные реакции с азотной и серной кислотами, хлорным нгелезом, сулемой и т. д. Характерно различие их в растворимости карбены нерастворимы в четыреххлористом углероде, ио легко растворимы в сероуглероде карбоиды, подобно, например, некоторым видам природного углерода (графит и т. п.), нерастворимы ни в каких растворителях. От каменных углей они отличаются тем, что при перегонке вовсе пе образуют фенолов. [c.264]

    Глава 3, написанная Харборном и Симмондсом, посвящена описанию природных источников простейших фенолов, кумаринов, флавоноидов, халконов, антоцианов и других фенольных агликонов растительного и животного происхождения. Здесь собран большой справочный материал по химическим структурам различных фенольных соединений. Глава не претендует на какие-либо теоретические обобщения, однако является весьма ценным собранием информационного материала. Весьма близка по содержанию и характеру изложения глава 4 (Харборн), в которой трактуются вопросы строения фенольных гликозидов, сахаров, агликонов и указываются их природные источники (в основном, растительного происхождения). [c.6]

    Действующим в нашей стране ГОСТ 2874 предусмотрен контроль мик-робиологаческих показателей содержания химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки, веществ и характеристик, влияющих на органолептические свойства воды, и органолептических показателей, а также содержание остаточного хлора в воде после ее обеззараживания. Кроме того, стандартом предусмотрен контроль концентраций других химических веществ, которые М01ут присутствовать в воде в результате промышленного, сельскохозяйственного и бытового загрязнений. Перечень таких веществ с соответствующими ПДК установлен в документе "Санитарные требования и нормативы охраны поверхностных вод от загрязнения сточными водами (СанПиН 4630 — 88), утвержденном Минздравом СССР в 1988 г. и введенном в действие с 1.01.89 г. Поскольку указанный документ охватывает свыше 1400 наименований органических и неорганических веществ, его применение в системе контроля качества воды представляет существенные трудности как в связи с проблемой выбора состава контролируемых компонентов, так и из-за отсутствия во многих случаях методик контроля, обеспечиваюпщх необходимую точность и достоверность определения концентраций отдельных компонентов. В связи с этим на практике при анализе воды поверхностных водоисточников в зависимости от оснащения лабораторий контролируют дополнительно к показателям ГОСТ определенный ограниченный перечень компонентов, включающих нефтепродукты, фенолы, поверхностноактивные вещества, кадмий, хром, цианиды и др. [c.8]

    Итак, в нефти были идентифицированы насыщенные жирные кислоты с 1—20 атомами углерода, изопреноидные кислоты с 14— 21 атомами углерода, циклопентан- и циклогексанкарбоновые кислоты с 6—10 атомами углерода, цнклопентилуксусные кислоты с 8—10 атомами углерода, алифатические кетоны с 3—6 атомами углерода, фенолы с 6—8 атомами углерода и целый ряд более или менее экзотических кислородсодержащих соединений, но количественные данные о них почти полностью отсутствуют. Судя по ограниченному числу данных, содержание всех этих соединений, по-видимому, увеличивается с увеличением пределов температуры кипения нефтяной фракции. Нефть нафтенового типа, вероятно, имеет большее содержание нафтеновых кислот, но нет никаких данных о том, что в парафинистой нефти содержится больше насыщенных кислот. Некоторые из соединений можно было бы получить из природных продуктов, и, следовательно, они могут иметь большое значение в органической геохимии. Наиболее была изучена нефтяная фракция с пределами температуры кипения 200—300° С, в то же время мало известно о материале, кипящем как ниже 200° С, так и выше 300° С. [c.115]


Смотреть страницы где упоминается термин Фенолы содержание в природных: [c.124]    [c.20]    [c.80]    [c.224]    [c.467]    [c.25]    [c.518]    [c.158]    [c.153]    [c.45]    [c.235]   
Фенолы (1974) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте