Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение и выделение различных ионов

    Ранее было показано, что при определенном значении налагаемого напряжения на электроды можно практически занершить выделение металла в процессе электролиза. Различные значения потенциалов разложения у разных ионов металлов позволяют при соответствующем выборе налагаемого напряжения определять их в смеси. Однако в процессе электролиза, как было показано ранее, э. д. с. образуемой системы постепенно возрастает, и по мере уменьшения потенциала катода может наступить момент, когда потенциал катода станет настолько низким, что начнется выделение второго компонента смеси. Для того чтобы избежать этого явления, необходимо строго контролировать потенциал катода и поддерживать его значение, отвечающим количественному выделеннк более электроположительного катиона. При этом в конце процесса электролиза ток падает практически до нуля, что и является критерием завершения электролиза данного катиона. Далее, изменяя потенциал электрода до значения, необ.ко-димого для количественного выделения второго, более электроотрицательного компонента, можно осуществить и это определение и т. д. Для проведения электролиза с контролируемым потенциалом служат так называемые потенцио-статы — приборы, поддерживающие строго заданные потенциалы катода или анода. Электролиз с контролируемым потенциалом обеспечивает большую селективность электрогравиметрического метода анализа, позволяет проводить разделение и последовательное определение ионов с близкими потенциалами разло жеиия Метод этот пригоден и для определения весьма малых количеств веществ. [c.439]


    Ниже приведены методы выделения различных ионов из.. смеси с другими ионами. Методы разделения следует находить для каждого из разделяемых элементов. [c.106]

    Разделение и выделение различных ионов. [c.217]

    В настоящее время ионообменные смолы широко используют в различных областях науки и промышленности для разделения и выделения различных ионов, в сахарной и фармацевтической промышленности, в биологии и медицине, в аналитической химии и в органическом синтезе в качестве различных катализаторов. [c.80]

    Реакции образования труднорастворимых соединений— осадков — применяют в аналитической химии для разделения ионов, а также для их обнаружения в качественном анализе и для гравиметрического и титриметрического осадительного определения в количественном анализе. Процессы осаждения и растворения соединений являются сложными физико-химическими процессами и имеют большое значение не только в химическом анализе, но и для разделения и выделения различных веществ в химической технологии. Способность к осаждению зависит от многих факторов свойств катионов и анионов, входящих в состав труднорастворимого соединения, концентрационных условий, в которых проводят процесс осаждения, pH раствора, температуры, ионной силы раствора, состава и содержания других веществ в растворе, которые не должны принимать прямого участия в образовании осадка, однако могут соосаждаться с ним или, наоборот, препятствовать осаждению. Все это необходимо учитывать при проведении реакции осаждения. [c.158]

    Способность ионообменников к обмену ионов в растворах обусловила их широкое применение в различных областях химии. В аналитической химии ионообменники успешно используют не только для разделения сложных смесей ионов, но также для концентрирования элементов из разбавленных растворов, выделения и удаления мешающих ионов, получения титрованных растворов, особо чистой воды и т. п. [c.11]

    Природа рекомбинационной люминесценции более сложная. Этот вид люминесценции наблюдается при рекомбинации (воссоединении) радикалов или ионов с образованием возбужденных молекул, он может возникать у различных газов и особенно характерен для кристаллофосфоров. При возбуждении (например, сульфидных кристаллофосфоров) происходит разделение их центра свечения на две противоположно заряженные части. При последующей встрече этих частей происходит их рекомбинация с выделением энергии, которая приводит в возбужденное состояние центр свечения. Последний переходит в невозбужденное состояние с излучением кванта люминесценции. [c.89]


    Следует заметить, что техника любого сорбционного выделения, очистки и концентрирования изотопов достаточно проста и надежна. Основной способ применения ионитов — колоночная хроматография в ее различных лабораторных вариантах. При фильтрации растворов, содержащих смесь различных ионов, через слой ионита в колонке происходит последовательное повторение актов сорбции — десорбции ионов, сорбируемых с различной селективностью. Результат этого — разделение ионов в колонке. В случае распределительной (экстракционной) хроматографии разделение [c.355]

    В настоящее время значение ионообменных процессов неизмеримо возросло. Ионообменные полимерные материалы применяют для выделения и удаления различных ионов в нефтяной промышленности, металлургии, текстильной промышленности, пищевой, лесной, бумажной и гидролизной промышленности. Их применяют для очистки сахарных растворов, очистки и обессоливания воды, для разделения и выделения различных редкоземельных и благородных металлов (урана, золота, молибдена, кобальта, вольфрама и т. п.), в производстве лечебных препаратов, в аналитической химии, в электрохимических процессах, очистке сточных вод, очистке горючего, удобрения почвы и других процессах. [c.235]

    Ионообменная хроматография. В основе ионообменной хроматографии лежит обратимый обмен между ионами ионообменника и ионами, содержащимися в растворе. Способностью избирательно поглощать те или иные ионы обладают синтетические смолы. Их называют ионообменными смолами, или ионитами. Они широко применяются для препаративного выделения различных природных соединений и для разделения сложных смесей. [c.32]

    Для разделения и выделения азотсодержащих ионов электрофоретические методы немногочисленны (табл. 20), однако представлены различными видами электрофореза электрофорезом на бумаге, тонкослойным электрофорезом и вытеснительным электрофорезом в трубке. В качестве примера укажем способ количественного определения роданидов после их электрофоретического выделения [893]. [c.172]

    Для превращения однофазной системы в двухфазную пользуются различными способами. Иногда при повышении температуры отделяемые вещества образуют газообразную фазу и их отделяют путем отгонки. К анализируемому раствору можно добавить жидкое вещество, образующее вторую фазу, в которую переходят отделяемые вещества. Такой метод разделения называют экстракцией. Вторую фазу можно создавать введением в раствор сорбентов, на которых адсорбируются отделяемые вещества. То же самое происходит, если в раствор вносят иониты, обменивающие свои подвижные ионы на те ионы, которые подлежат выделению из раствора. Можно также использовать химические взаимодействия, в результате которых отделяемые вещества образуют новую фазу — осадок. Это разделение путем осаждения. Разделение фаз осуществляют после установления равновесий разделяемых веществ. Это значит, что разделение не может быть полным— всегда какое-то равновесное количество остается в другой фазе. Если вещество 84 после наступления равновесия находится в основном в I фазе, молярная доля его в этой фазе [c.247]

    Осаждения добавлением сульфид-ионов имеют очень важное значение в количественном анализе не только для выделения отдельных элементов, но и для отделения групп элементов друг от друга. Осаждения могут быть проведены при самых различных условиях как в отношении концентрации ионов водорода, так и в отношении других особенностей раствора, в зависимости от преследуемых целей. Например, изменяя концентрацию ионов водорода, можно мышьяк (V) отделить от свинца, свинец от цинка, цинк от никеля, никель от марганца й марганец от магния. В щелочных растворах некоторые сульфиды образуют растворимые соединения, что может быть использовано для разделения элементов внутри группы, например для отделения свинца от молибдена. Разделения внутри группы возможны также путем превращения одного или нескольких ее членов в комплексные анионы, которые не реагируют с сульфид-ионами, например отделение кадмия от меди в растворе цианида, меди или сурьмы (III) от олова (IV) в растворе фтористоводородной кислоты, и сурьмы от олова в растворе, содержащем щавелевую кислоту и оксалат. [c.83]

    Обменники в форме гидратированных оксидов для солей многозарядных элементов имеют важное значение при разделении пары Rb— s и прн выделении цезия из смеси продуктов расщепления урана. С этой целью чаще всего используют фосфат циркония [25—28], а для элюирования — растворы нитратов различной концентрации, хлорид аммония или азотную кислоту. Коэффициенты распределения ионов щелочных металлов на фосфате циркония представлены в табл. 5.6. [c.158]


    Однократный обмен между твердым телом, включающим подвижные ионы, и раствором может служить методом очистки лишь в редких случаях огромной разницы в ионообменном поведении разделяемых элементов. Для разделения ионов с близкими свойствами применяют ионообменную хроматографию. По определению Ф. М. Шемякина, при хроматографировании смеси веществ происходит пространственно различное распределение каждого компонента данной смеси между двумя фазами с последующим полным разделением в пространстве этих компонентов путем промывания, вытеснения или выделения осадка. Причиной такого разделения является различие во взаимодействии каждого из компонентов данной смеси веществ, находящихся в первой фазе, называемой растворителем, со второй фазой, называемой сорбентом. [c.135]

    Единственным методом отделения радиоактивных атомов от стабильных, входящих в состав мишени, является метод атомов отдачи (метод Сцилларда — Чалмерса) [34]. Сущность этого метода заключается в следующем. При облучении соединения стабильного изотопа медленными нейтронами, захват нейтрона ядром этого изотопа сопровождается образованием составного возбужденного ядра, которое переходит в основное состояние путем эмиссии у-квантов захвата. Получаемая атомом энергия отдачи обычно во много раз превышает энергию химической связи атомов элемента в облучаемом соединении. В результате происходит разрушение молекулы и радиоактивный атом выделяется в свободном состоянии или в виде иона. Если между облучаемым соединением и формой стабилизации радиоактивных атомов не происходит изотопного обмена и химические формы, в виде которых стабилизируется радиоактивный изотоп, сравнительно легко отделяются от исходного соединения, то выделение этих форм приводит к обогащению изотопа. Таким образом, чрезвычайно трудная проблема разделения изотопов сводится к разделению различных химических форм одного и того же элемента. [c.24]

    Отсюда можно сделать вывод, что выделение и разделение гидроокисей возможно при условии точного соблюдения величин pH в растворе, однако и в этом случае возможны соосаждения при достаточно больших концентрациях сопутствующих ионов различных примесей. [c.63]

    Ионообменный метод, широко используемый в различных областях химии, чрезвычайно перспективен для разделения и выделения радиоактивных изотопов, особенно в микроколичествах. Метод ионного обмена основан на способности некоторых твердых веществ обратимо поглощать ионы из раствора  [c.145]

    Однако возможности хроматографического метода не являются безграничными. В жидкостной хроматографии пользуются различными приемами для выделения чистых компонентов или хотя бы отдельных групп веществ из сложной смеси. В зависимости от разнообразия задач и способов ведения процесса эти приемы связаны, например, с разделением смеси электролит — неэлектролит на ионообменных адсорбентах, с разделением на группы веществ, с применением растворителей и элюирующих растворов для элюирования распределительной и первичной ионообменной хроматограммы, с заменой одних катионов и анионов на другие, с процессами в смешанном слое, с разделением сильных и слабых электролитов, с применением осадителей в колонках (осадочная хроматография), с применением комплексообразующих веществ для элюирования или для маскировки мешающих ионов и т. д. Все эти приемы неизбежно приводят к тому, что для получения чистого компонента из сложной смеси, как правило, требуется осуществить несколько стадий процесса. [c.99]

    Большое число работ по противоточному разделению смесей различных ионов с использованием вспомогательных компонентов было выполнено Хистером и Фермейленом с сотрудниками, которые в целях выделения следовых количеств элементов, с одной стороны, разрабатывали теорию вопроса, а, с другой стороны, на примере разделения смеси лития и калия проводили техническое изучение специальной, непрерывно работающей аппаратуры. Как и в работе Диккеля с сотрудниками, в качестве [c.249]

    При выборе соответствующей формы комплексных соединений с помощью ионообменников возможно провести также групповое отделение нескольких элементов. Кроме уже упомянутых хлорид-ных комплексов, устойчивость которых хорошо коррелирует с концентрацией хлористоводородной кислоты и которые подходят для селективного разделения, процессы ионного обмена могут контролироваться с помощью различных органических комплексообразующих реагентов (лимонная и винная кислоты, ЭДТА и т. д.). Сильноосновные анионообменные колонки, насыщенные комплексными анионами этого типа, пригодны для одновременного выделения различных групп катионов. Колонки с анионами, образующими осадок (хлориды, сульфиды, карбонаты и т. д.), также использовались для разделения некоторых групп катионов. Как следует из приведенных примеров, селективное элюирование пригодно для разделения отдельных ионов. В общем случае на определение примесей спектральными методами не оказывает влияние неполнота отделения мешающего элемента, которая возможна из-за недостаточно благоприятных условий взаимодействия раствора со смолой. Для большинства спектральных методик нет необходимости использовать ионный обмен для полного отделения ионов одного типа, т. е. селективную хроматографию при ионном обмене. Вполне достаточно воспроизводимо концентрировать определенную группу следов примесей или удалять основную часть мешающего элемента. [c.70]

    Количественное хроматографическое разделение смесей, являющееся целью хроматографического опыта, сближает аналитическое и препаративное применение хроматографии это дало основание М. М. Сепявипу кратко затронуть в статье вопрос получения ряда редких металлов методом ионного обмена и ионообменной хроматографии. Однако в последние годы области применения ионообменных процессов значительно расширились и, в частности, захватили область органических соединений. В настоящее время хроматографически разделяют смеси не только простейших, способных к диссоциации органических соединений, например, карбоновых кислот, но и главным образом сложные смеси алкалоидов, аминокислот и пр. В сборнике этому вопросу посвящена статья Г. В. Самсонова, содержащая обширный материал по специфике иоипого обмена больших молекул органических веществ и в значительной степени освещающая современные, во многом принадлежащие самому автору, исследования в области ионообменного выделения различных индивидуальных антибиотиков в чистом виде. [c.8]

    Условия отделения и выделения различных катионов и анионов в их разнообразных смесях можно варьировать в широких пределах. Ионный обмен позволяет удалять из раствора нежелательные ионы и электролит, заменять их другими или отделять друг от друга. Когда электролит протекает через колонку, он обменивает свои противоионы на противоионы, содержащиеся в зернах ионита. Поэтому вытекающий из колонки раствор содержит до проскока только противоионы, вытесненные из зерен ионита. Степень отработки ионита зависит от размеров колонки, положения равновесия ионного обмена, химического состава ионита и условий работы колонки. Если ионит селективно поглощает противоионы из раствора, то между зонами обоих сортов противоионов возникает и сохраняется острый фронт, который делается стационарным. Иониты в Н- и ОН-форме могут полностью освободить растворы от содержащихся в них катионов и анионов. Необходимо умело использовать избирательное действие различных ионитов, содержание в них различных функциональных групп и различный характер связи их с противоионами металлов или анионами. Больщое значение имеет применение процессов комплексообразования для разделения смесей ионов. Эти разделения основаны на образовании комплексных соединений металлов с одним комилексообразователем, но различающихся величинами констант нестойкости. Очень эффективно разделение лантанидов и актинидов, основанное на комплексообразовании с анионами органических кислот винной, лимонной, комплексонов различного состава и других. Катионы лантанидов или актинидов таким путем были полностью разделены, в то время как [c.103]

    Значительные трудности представляет разделение смеси соединений различных РЗЭ. Эти элементы всегда встречаются вместе, и их соединения очень похожи по свойствам. Раньше для разделения их применяли дробную кристаллизацию (основанную на различии в растворимости). Чтобы получить чистые препараты, приходилось проводить тысячи операций по выделению кристаллов. В настоящее время соедннения РЗЭ разделяют, пропуская раствор солей РЗЭ через колонну, заполненную катионообменной смолой (в виде гранул). Данный метод основан на различной способности ионов РЗЭ к комплексообразованию, что связано с различием их ионных радиусов r , уменьшающихся при переходе от La к Lu вследствие лантаноидного сжатия. С уменьшением возрастает прочность комплексов Э+ с HjO, поэтому смола хуже адсорбирует находящие в водном растворе гидратированные ионы тяжелых лантаноидов. Степень разделения можно улучшить добавлением в раствор комплексообразователей. Для разделения РЗЭ используют также экстракцию. [c.603]

    Разделение на основе различной растворимости относится к наиболее старым методам выделения и очистки белков. При изозлектрическом осаждении разделение достигается благодаря минимальной растворимости глобулярного белка в изоэлект-рической точке (ИЭТ). Следует обратить внимание, что ИЭТ белков помимо прочего зависит от ионной силы раствора. ИЭТ некоторых белков приведены в табл. 3-6. [c.346]

    Потенциал осаждения металла из комплекса отличается от потенциала выделения металла из простых солей. Координация аддендов ионами металлов-камплексообразователей приводит к изменению величины потенциала выделения металла. Причем потенциал выделения из однотипных комплексов для разных металлов сдвигается в различной степени в за висимости от прочности образующихся комплексов. Поэтому становится возможным электролитическое разделение этих металлов электролизом растворов их координационных соединений, С другой стороны потенциалы осаждения металлов в результате образования комплексов могут быть сближены. Электролиз растворов таких ком1плексов приводит к выделению сплавов. Например, в присутствии избытка цианид-иона удается электролитически отделить железо от цинка, тогда как при электролизе циаяидсодер-жащих растворов меди и цинка выделяется латунь. [c.15]

    Очевидно, что многие нуклеозиды являются интермедиатами в биосинтезе н расщеплении нуклеотидов и полинуклеотидов. В дополнение к так называемым спонгонуклеозидам (термин, применяемый к модифицированным пуриновым нуклеозидам, полученным из карибской губки ryptotethya rypta), которые являются производными арабинозы, многие антибиотики являются производными нуклеозидов, часто имеющих модифицированные углеводные остатки они будут детально обсуждаться позднее. Нуклеозиды сравнительно легко выделить из химических или ферментативных гидролизатов природных полинуклеотидов условия и практические детали этого процесса можно найти в общих учебниках по нуклеиновым кислотам [2, 7, 24]. Все коммерчески доступные образцы основных нуклеозидов получены этим путем. Для выделения больщих количеств таких нуклеозидов наиболее целесообразно применение относительно грубого фракционирования, основанного на различной растворимости, и методов ионного обмена. Для выделения малых количеств модифицированных нуклеозидов либо из природного источника, либо полученных в результате химического синтеза, пригодны многочисленные более эффективные методы, и они будут обсуждаться отдельно. Наконец, следует помнить, что выделение нуклеозидов часто осуществляют дефосфорилированием нуклеотидов [25], выделение и разделение которых не будет рассматриваться в настоящей главе. [c.72]

    Аналитическое применение ионообменных процессов чрезвычайно разнообразно. Они используются в качественном и количественном анализе как вспомогательные операции в самых различных целях для концентрирования определяемых ионов, для удаления мешающих ионов, для разделения смеси как одноименно, так и разноименно заряженных ионов, для определения общего солесодержа-ния в растворах электролитов, для отделения катионов, образующих амфотерные гидроксиды, для выделения примесей и получения химически чистых препаратов при исследовании строения и прочности комплексных соединений, для отделения неэлектролитов от электролитов, или наоборот, и т, д. [c.139]

    В МХТИ им. Д. И. Менделеева в лабораторных условиях были изучены различные варианты выделения ценных компонентов из термообработанного гальваношлама АЗЛК. Было применено выщелачивание цветных металлов с использованием серной и азотной кислот (рис. 29). Вариант выщелачивания явился предпочтительным с точки зрения возможности последующего разделения переходящих в воду ионов цветных металлов и обезвреживания образующихся сточных вод. Так как была достигнута большая селективность, полученные после корректировки кислотности и фильтрации сернокислые растворы содержали в основном Си, Со, N1, Сг, Сс1, щелочные металлы [45]. [c.108]

    ФЛОТАЦИЯ, способ разделения мелких тв. частиц разных в-в, а также выделения капель дисперсной фазы из. эмульсий, основанный на различной их смачиваемости и накоплении на пов-сти раздела фаз. При обогащении полезных ископаемых широко примен. пенная Ф., когда через с.месь воды с частицами разных минералов пропускаются мелкие пузырьки воздуха, к к-рым прилипают частицы определенных минералов и выносятся на пов-сть, образуя трехфазную пену, подвергаемую в дальнейшем сгущению и фильтрованию. Этот вид Ф. все чаще примен. и для очистки сточных вод, в частности для выделения из них капель масел и нефтепродуктов. Жидкой фазой, помимо воды, служат насыщ. р-ры солей (напр., при Ф. калийных руд), реже — плав самородной серы (фаза-носитель в зтом случае — вода). Перспективно примен. в хим. пром-сти т. и. ионпой Ф., при к-рой таходящиеся в р-рах ионы полезных в-в связываются разл. реагентами в тонкодисперсные гидрофобные осадки, к-рые затем выделяются Ф. [c.624]

    Обессоливание. В разделе, посвященном ионному обмену, уже отмечалось, что при анализе биохимических проб для сохранения активности ферментов или для проведения некоторых разделений часто используют буферные растворы. В результате выделения получают водный раствор искомых соединений, а также электролиты, которые входят в состав различных буферных растворов. Если работают с декстрано-вым гелем, который будет исключать молекулы пробы, то обессоливание раствора пробы можно выполнить посредством гель-фильтрации. Для этого нужно только ввести в колонку солевые растворы пробы, а элюирование проводить чистой водой. Относительно небольшие [c.598]

    Относительная легкость, с которой хром переходит в состояния окисления 2-f, 3 +, и4 +, в значительной мере упрощает его отделение от многих элементов, мешающих его определению. Так, окисление Сг(1П) до r(VI) перекисью водорода или бромом в щелочном растворе с последующим фильтрованием гидроокисей приводит к отделению от многих металлов. Отделение от анионов достигается затем восстановлением r(VI) до Сг(1И) добавлением кристаллического сульфита натрия и осаждением Сг(ОН)з с помощью NaOH или Nag Og. Этот прием особенно широко используется в радиохимических исследованиях [239, 327] и при анализе различных объектов [94, 266]. Для выделения микроколичеств хрома используют соосаждение Сг(П1) с гидроокисями Fe(III), Ti(IV), [327, 348, 350]. Показано [350], что малые количества Сг(1П) могут быть количественно выделены из растворов с pH 5,5—10,5 с гидроокисями Fe(HI), Zr(IV), Th(IV), Ti(IV), e(IV), La(III), Al(III). Для последующего отделения r(III) от больших количеств указанных элементов используют окисление Сг(1П) до r(VI) с вторичным осаждением гидроокисей [203, 348]. Для проверки полноты такого разделения изучено соосаждение r(VI) с гидроокисями металлов при использовании в качестве осадителя 0,5 М КОН (рис. 20) [348]. С уменьшением pH раствора способность удержания хромат-ионов осадками гидроокисей возрастает в ряду Ti(I V) < Fe(III) < Zr(IV) < Th(IV) < d(n) < Y(III). Отделение микроколичеств Сг(1И) от больших количеств r(VI) проводят с помощью соосаждения Сг(П1) с Zn(0H)2. Эту методику используют при определении примеси Сг(1И) в радиоактивных препаратах Ка СгО , Кз СгаО, и 1СгОз[675]. Для отделения 0,01— 5 J t3 Сг(1П) от 0,01 —10 мг Mo(VI) используют свойство Mo(VI) не соосаждаться с осадком Mg(0H)2 при pH 11,5, в то время как при небольших содержаниях 5 мг) Сг(1П) количественно соосаждается при pH 10,3—13,8 [349]. Отделение Mo(VI) от r(VI) проводят аналогичным образом, но с добавлением этанола для восстановления r(VI) до Сг(1И). Разделение Сг(1И) и Fe(II) ос- [c.126]

    Последняя из групп методов разделения объединяет. методы, основанные на различиях в свойствах ионов, ато.мов или молекул, проявляемых в пределах одной гомогенной системы при воздействии электрического, магнитного, гравитационного, теплового полей или центробежных сил. При этом не исключается возможность фазовых превращений при переводе исходной смеси веществ в то агрегатное состояние, в котором происходит разделение, или при выделении фракций ее отдельных компонентов. Эффект разделения достигается за счет различного пространственного перемещения веществ в пределах фазы, в которой происходит их разделение. Различия в скорости пространственного перемещения ионов, атомов или молекул будут проявляться в зависимости от их массы, размеров, заряда, энергии взаимодействия частиц с ионами и молекулами, образующими среду, в которой происходит разделение. Относительная роль тех или иных факторов в достижении конечного эффекта разделения, в свою очередь, зависит от природы действующих на них сил. Наиболее очевидный случай — электрофоретическое или, как его иногда называют, электромиграционнос разделение ионов в растворах за счет различных скоростей их движения в электрическом поле. Здесь важнейшими факторами оказываются размер и заряд иона. Различия в массе и заряде в наибольщей степени проявляются при воздействии па ионизованные частицы ускоряющего электрического поля и отклоняющего магнитного. Этот способ воздействия на систему лежит в основе масс-сепарационного метода. При разделении под воздействием центробежных сил — ультрацентрифугировании определяющим фактором оказывается масса молекул. [c.241]

    Во многих из перечисленных методов разделения применяются в значительных количествах различные вспомогательные низкомолекулярные вещества — органические растворители, соли и кислоты, создающие нужные значения ионной силы и pH. Перед окончательным выделением очищенного биополимера или перед тем как подвергать частично очищенный материал следующей стадии фракционирования, обычно требуется избавиться от этих вспомогательных соединений. Для этой цели широко используется процедур , называемая диализом. Она основана на применении мембран, проницаемых для воды и низкомолекулярных веществ и непроницаемых для биополимеров. Чаще всего с этой целью используют мембраны (пленки) из целлофана, который представляет собой нитрат целлюлозы с содержанием остатков нитрата порядка одного моля на моль остатков глюкозы. Такой материал обладает необходимой механической прочностью и в то же время достаточно гидрофилен, чтобы через 1гего проходили молекулы воды и гидрофильных низкомолекулярных компонентов. В то же время для полимерных [c.236]

    Газ, выделяющийся во всех этих стадиях, а также вследствие электронной бомбардировки различных частей трубки, был подвергнут исследованию [15881. Выделение газов из металлов [5681, слюды и геттеров [2099] также исследовалось с использованием омегатрона при давлениях порядка 10 мм рт. с/й. Описано применение омегатрона [1788] для изучения количества кислорода, окиси углерода и азота, адсорбирующихся на вольфрамовом катоде при 300° К, которые выделяются холодной нитью . Омегатрон может быть использован в качестве манометра для измерения давления ионизационный манометр неудовлетворителен для измерения давления кислорода. В работах, связанных с исследованиями верхних слоев атмосферы, радиочастотный масс-спектрометр особенно удобен благодаря своим малым размерам и весу (18421. Несколько таких приборов может быть установлено на одной ракете 1963], и специальные условия, при которых проводилась работа, обеспечили возможность создания очень простых конструкций. Например, при работе на большой высоте можно было устранить вакуумный кожух, системы напуска и с(качную систему, а для изучения ионов, присутствующих в атмосфере, иет необходимости в ионизационной камере. Разрешающая способность прибора была очень мала, поскольку нужно было различать только такие ионы, как N , NO и Oi, поэтому необходимо было иметь три прибора для анализа положительных и отрицательных ионов, а также нейтральных осколков. Описан метод для калибровки по массам [10531 и опубликованы результаты различных измерений арктической ионосферы [1052, 1054, 1188, 1371, 2041]. Было показано, например, что происходит диффузионное разделение аргона и азота на высоте выше 110 км, что при 220 км основными газами являются N2, О, NO и О2 в примерных соотношениях 2,8 2,9 1,4 1. Ионы О не появляются ниже 130 км, но представляют собой основные положительные ионы в спектре на высоте больше 200 км. В Арктике на высоте 200 км плотность атмосферы днем в летний период в 20 раз больше плотности ночью в зимнее время, равной 5-10" г/л . На высоте 100наблюдались ионы О , N0", NO (преимущественно ионы N0 и 0J). Преобладание ионов N0" можно объяснить низким потенциалом ионизации NO (9,5 эе). Ионизационные потен циалы О2 и N2 составляют 12,5 и 15,5 эв соответственно. [c.497]

    Использование жидкостной хроматографии для систематического разделения свободных альдегидов и кетонов не получило широкого распространения. Большинство статей, посвященных применению жидкостной хроматографии для этих соединений, касается главным образом выделения п очистки синтетических продуктов. При хроматографировании альдегидов на окиси алюминия следует иметь ввиду, что они могут подвергаться некоторым катализируемым реакциям в щелочной среде и образовывать различные промежуточные продукты. Эти реакции ограничивают обычное применение жидкостной хроматографии альдегидов, особенно если в качестве сорбента используют окись алюминия. Карбонильные соединения наиболее часто разделяются в форме их бисульфитных соединений путем ионообменной хроматографии на смолах основного характера. В этом случае используется химическая активность карбонильных соединений по отношению к ионам бисульфита, что приводит к образованию а-оксисульфокислот. В жидкостной хроматографии карбонильных соединений также используется образование их производных, главным образом оксимов и 2,4-динитрофенилгидразонов. [c.48]

    Пенная флотация представляет собой метод частичного разделения компонентов раствора (смеси), основанный на различной их активности по отношению к поверхности раздела жидкой и газовой фаз. Пенная флотация пригодна для выделения частиц самой разной природы и размеров от ионов и молекул до крупных частиц суспензий. Необходимая для эффективного выделения вещества большая межфазовая поверхность создается барботиро-ванием газа через исследуемый раствор, содержащий поверхностноактивные вещества (ПАВ) —пенообразователи. [c.295]

    Физико-химические и методические основы адсорбциопно-комплексо-образовательного хроматографического метода были освещены в ряде работ [16— 23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка солей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]


Смотреть страницы где упоминается термин Разделение и выделение различных ионов: [c.282]    [c.551]    [c.153]    [c.28]    [c.529]    [c.307]    [c.271]    [c.193]    [c.657]    [c.230]   
Смотреть главы в:

Ионообменные высокомолекулярные соединения -> Разделение и выделение различных ионов




ПОИСК





Смотрите так же термины и статьи:

Выделение ионов

Иониты разделение ионов

Разделение ионитами



© 2025 chem21.info Реклама на сайте