Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение на ПКК в газожидкостном варианте

    Период, наступивший в аналитической химии органических соединений с начала 60-х годов, без преувеличения может быть назван эпохой хроматографии. Один из вариантов этого метода — колоночная жидкостная хроматография — был создан русским ботаником М. С. Цветом в начале века [31]. На протяжении последующих 40 лет хроматография не находила широкого практического применения. Однако в этот период были выполнены работы, имевшие принципиальное значение и заложившие основы тонкослойной [9] и распределительной хроматографии [288]. Лишь после 1950 г. приходит время признания хроматографии, созревания ее как эффективного метода разделения сложных смесей соединений и их анализа. В 1952 г. были выполнены первые работы по газожидкостной хроматографии [216], а вскоре освоен выпуск газовых хроматографов, и в течение последующих 20 лет газохроматографический анализ стал основным методом исследования смесей летучих термически устойчивых соединений. Но большинство органических веществ не обладает необходимой для газовой хроматографии летучестью и термостойкостью, и хроматографировать их можно только в более мягких условиях, характерных для жидкостной колоночной хроматографии. Скорость же и эффективности разделения, а также чувствительность анализа по этому методу долго оставались неудовлетворительными. И лишь в 1965— 1975 гг. были в принципе решены основные научные и технологические проблемы, сдерживавшие развитие метода. Последовавший затем прогресс был столь поразителен, что современная инструментальная разновидность метода получила самостоятельное наименование — высокоэффективная жидкостная хроматография.  [c.7]


    Для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов 02-0 и некоторых неуглеводородных компонентов, применяется [2] метод газовой хроматограф в газожидкостном варианте с использованием полярных и неполярных жидких фаз и в адсорбционном варианте с применением природных синтетических и модифицированных адсорбентов [З]. Для исследования пента-амиленовой фракции бензина каталитического крекинга, а также жирного газа этого же бензина термокаталитического разложения в качестве наполнителя колонки применяли фракцию волокнистого углерода, полученного по методике [4] зернением 0,25-0,5 ш, обработанную хинолином в различных процентных соотношениях. Лучшее разделение было получено при загрузке колонки адсорбентом, содержащим 15-20 хинолина. [c.158]

    А. Джеймс и А. Мартин (1952) для разделения жирных кислот в качестве подвижной фазы использовали газ, положив начало газовой хроматографии в газожидкостном варианте. В связи с тем что вязкость газа почти в 100 раз меньше вязкости жидкости, диффузионные процессы протекают в нем очень быстро, и скорость движения газовой фазы можно резко повысить. Процесс разделения с помощью газовой хроматографии обычно не превышает [c.78]

    В большинстве современных работ по непрерывной хроматографии описываются газожидкостные варианты разделения, и поэтому приводимые ниже сведения из теории относятся именно к такому варианту. Однако читателю не следует забывать об общности этого метода и о его пригодности к другим двухфазным разделительным системам. [c.334]

    Разделение на ПКК в газожидкостном варианте [c.18]

    Газовая хроматография. Эта хроматография представляет собой один из вариантов распределительной хроматографии. Одной из ее разновидностей является газожидкостная хроматография. Неподвижной фазой служит нелетучая жидкость (глицерин, поли-этиленгликоль, ланолин и др.), которой пропитывают твердый порошкообразный адсорбент (активированный уголь, целит, специальный огнеупорный кирпич и т. п.) до такой степени, чтобы он оставался на ощупь сухим и легко продувался газом. Таким адсорбентом, содержащим неподвижную жидкую фазу, равномерно заполняют колонку — стеклянную или медную трубку диаметром примерно 0,5 см и длиной до 20 м. Роль подвил<ной фазы выполняет какой-либо газ (водород, гелий, аргон, азот), в который вносится разделяемое вещество также в виде газа или пара. Полученная смесь газов подается в колонку под определенным давлением и при низкой температуре. Разделение смесей на компоненты происходит в общем так же, как и в случае адсорбционной хроматографии в колонке при выделении растворенных веществ. [c.173]


    Начиная с 1955 г. (в СССР — с 1958 г.) промышленность приступает к выпуску специальных приборов — газовых хроматографов, предназначенных для разделения сложных многокомпонентных смесей в газожидкостном и газоадсорбционном вариантах. [c.6]

    Ради полноты картины следует упомянуть о некоторых неизотермических методах, основанных на использовании термических эффектов, различным образом воздействующих на разделение. Развитие этих вариантов, обладающих довольно существенными недостатками, относится к периоду, когда применялась преимущественно газоадсорбционная хроматография. Вследствие ограниченности выбора сорбентов приходилось добиваться известных эффектов разделения, изменяя термические условия опыта. Газожидкостная хроматография, осуществляемая в изотермических условиях или с программированием температуры и позволяющая широко варьировать как неподвижные фазы, так и условия опыта, имеет в настоящее время несомненное преимущество перед этими методами. [c.423]

    Таким образом, расчеты и экспериментальные данные показывают, что разделение на модифицированных полимерных сорбентах отличается от обычного варианта газожидкостной хроматографии, так как определяется в основном совокупным действием процессов адсорбции на поверхности полимерного сорбента и растворения в неподвижной жидкой фазе. При этом твердый полимерный носитель играет весьма активную, а иногда и решающую роль в разделении. [c.87]

    М. Дж. Е. Голеем [1] в 1957 г. был разработан вариант газожидкостной хроматографии, существенно повышающий эффективность разделения и получивший название капиллярной хроматографии. [c.235]

    Мы уже отметили преимуш ества такого геометрически и химически модифицированного силикагеля с малой и весьма слабо адсорбирующей поверхностью в качестве инертного носителя неподвижных фаз, в частности жидких неподвижных фаз в газожидкостном (рас-творительном) варианте, так как обычные инертные носители на самом деле далеко не инертны, например алюмосиликаты. Кроме того, их пористость неоднородна. Описанное химическое модифицирование поверхностей, очевидно, имеет большое значение не только в случае насадочных колонок, но и в случае капиллярных колонок. На рис. 9 показаны хроматограммы ряда паров, полученные на стеклянных капиллярах до и после модифицирования их поверхности [22]. Верхняя хроматограмма получена на немодифицированном капилляре после нанесения пленки силиконового масла. Получились размытые пики. Из стеклянного капилляра с поверхностью, модифицированной триметилсилильными группами, все изучавшиеся пары вышли практически одновременно с газом-носителем, что свидетельствует об инертности модифицирующего слоя. После нанесения пленки силиконового масла на такой модифицированный капилляр получилось прекрасное разделение, все компоненты вышли в виде четких симметричных пиков. [c.19]

    Неорганические соли как адсорбенты. Неорганические соли используют в газовой хроматографии как в качестве растворителей, так и в качестве адсорбентов. Для хроматографического разделения применяют эвтектическую смесь неорганических солей (нитратов лития, натрия и калия) при 150—400°С. В этом случае, по существу, использовали газо-жидкостный вариант хроматографии. Как адсорбенты неорганические соли были использованы для разделения о-, м- и -терфенилов соли в количестве 25% от массы наносились на хромосорб Р. Более детальное исследование разделительной способности различных солеи (в основном хлоридов) по отношению к многоядерным ароматическим соединениям было проведено американским ученым Соломоном. В этих случаях непористые соли наносили на твердые носители, используемые в газожидкостной хроматографии. [c.118]

    В 1941 г. Мартин и Синг предложили метод распределительной хроматографии в жидкостно-жидкостном варианте и указали на возможность осуществления газожидкостной хроматографии, что, однако, практически не было использовано до 1952 г., когда Джеймс и Мартин создали теорию процесса и разработали конкретную методику анализа жирных кислот. Мартин с сотр. разработали также метод бумажной распределительной хроматографии о возможности разделения смесей на бумаге [c.11]

    Варианты газовой хроматографии — газо-жидкостная и газо-адсорбционная— имеют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи. Так, в начальный период развития газовой хроматографии анализировали только газы и легколетучие жидкости на колонках с сильными адсорбентами. Переход к газо-жидкостной хроматографии способствовал уменьщению коэффициента распределения Г для более тяжелых сорбатов, в результате чего появилась возможность анализировать их хроматографическим методом. Использование неподвижных жидкостей самой разнообразной химической природы сделало газожидкостную хроматографию универсальным методом, позволяющим осуществлять разделение на основе различных видов физико-химических взаимодействий между сорбатами и растворителями. Кроме того, линейность изотерм растворения обеспечивала получение практически симметричных пиков сорбатов (при правильном подборе условий процесса). Однако существенные ограничения, связанные с летучестью неподвижных жидкостей, не позволяли проводить высокотемпературные процессы разделения высококипящих веществ ни в аналитическом, ни в препаративном вариантах. Поэтому дальнейшее развитие газо-адсорбционной хроматографии с применением однороднопористых адсорбентов различной химической природы было необходимо для обеспечения дальнейших успехов газовой хроматографии как метода анализа и исследования высококипящих соединений. [c.33]


    Хроматография— ЭТО физико-химический метод разделения смеси веществ, основанный на распределении компонентов между двумя несмешивающимися фазами. Подвижной фазой является инертный газ, неподвижной — жидкость или твердое тело. Различают два варианта газовой хроматографии — газоадсорбционную и газожидкостную. [c.41]

    При выводе уравнений, определяющих перенос компонента в газохроматографической системе, не делается заранее никаких предположений о природе неподвижной фазы и характере ее взаимодействия с молекулами вещества i. Поэтому не существует принципиальной разницы между распределением в собственном смысле этого понятия, т. е. поглощением молекул вещества I всем объемом фазы, если она представляет собой жидкость (неподвижную жидкость), и их связыванием только на поверхности раздела фаз путем адсорбции, если неподвижной фазой является твердое тело (адсорбент). В случае адсорбции понятие объема фазы применяется для элемента объема подвижной фазы, который взаимодействует с прилежащей поверхностью неподвижной фазы. Основные варианты процесса разделения характеризуются понятиями распределительная газожидкостная хроматография (ГЖХ, GL ) и адсорбционная газовая хроматография (ГАХ, GS ).  [c.24]

    Одним из вариантов хроматографических колонок в газожидкостной хроматографии являются так называемые капиллярные колонки, в которых неподвижная жидкая фаза нанесена непосредственно на внутреннюю поверхность капилляра. Таким образом, сама стенка трубки служит твердым инертным носителем. Капиллярные колонки могут быть очень длинными, от нескольких десятков до нескольких тысяч метров, и изготовляются из стеклянных, металлических или нейлоновых капилляров диаметром 0,01—0,1 см. На этих колонках осуществляется быстрое и четкое разделение, недостигаемое обычными физико-химическими методами. [c.242]

    Препаративная газожидкостная хроматография широко применяется в лабораторной практике для получения небольших количеств чистых веществ. Чистота получаемых продуктов зависит в основном от эффективности разделения, стабильности неподвижной фазы и чистоты газа-носителя. Загрязнения от неподвижной фазы можно избежать в газоадсорбционном варианте (напр., используя в качестве адсорбента геометрически модифицированный силикагель ). Газ-носитель можно исключить, применив тепловытеснительный метод, в котором функции инертного проявителя выполняет движущееся тепловое поле. Отсутствие газа-носителя, кроме того, приводит к получению не разбавленного инертным газом продукта и сводит к минимуму потери последнего при улавливании, даже если ловушки охлаждаются обычным льдом. [c.147]

    Следует отметить, что в настоящее время возможно приготовление ПКК с использованием всех современных неполярных жидких фаз (НЖФ) на основе си-локсановых полимеров и на основе поли этилен гл и кол ей. Поэтому в варианте газожидкостной хроматографии на ПКК возможно решение многих задач разделения, которые ранее решали с помощью хроматографии на насадочных или капиллярных колонках. [c.19]

    Различные варианты хроматографии классифицируют по нескольким признакам 1) по агрегатному состоянию подвижных фаз — жидкостная и газовая. В свою очередь газовая хроматография может быть разделена по агрегатному состоянию неподвижной фазы — на газотвердую и газожидкостную 2) по механизму разделения— ионообменная, адсорбционная, распределительная, осадочная 3) по способу проведения процесса или аппаратурного оформления— колоночная, капиллярная, плоскостная (бумажная и тонкослойная). [c.195]

    Сорбенты для разделения свинецорганических соединений.. В работах по ГХ СОС основное внимание уделено газожидкостной хроматографии (ГЖХ) [98]. Газоадсорбционный (ГАХ) вариант для анализа СОС имеет пока ограниченное применение. [c.18]

    При использовании неспецифичных адсорбентов — активного угля, сажи, элюирование углеводородов происходит в соответствии с молекулярной массой [44]. Получены совершенно неполярные углеродные молекулярные сита, при применении которых вода элюируется раньше метана [45]. Сл абоспецифичньши адсорбентами являются сополимеры стирола или этилстирола и дивинилбен-зола [46], также слабо удерживающие воду [47]. Хорошее разделение и быстрый анализ смесей низкокипящих углеводородов достигался при использовании адсорбционной газовой хроматографии на капиллярных колонках, наполненных алюмогелем [48], а также газожидкостного варианта [49, 50]. [c.116]

    Одной из важнейших характеристик детектора является чувствительность. поскольку она связывает сигнал детектора с измеряемой концентрацией и в значительной мере определяет аналитические возможности хроматографа в целом. В частности, от чувствительности детектора зависит выбор величины пробы и возможность использования различных хроматографических колонок. Так, применение микронасадочных и капиллярных колонок возможно лишь с высокочувствительными детектирующими устройствами, а при работе с обычными нa aдoчныv и колонками могут использоваться и детекторы средней чувствительности — по теплопроводности и по плотности. Применени(5 высокочувствительных детекторов весьма желательно, так как позволяет значительно уменьшить величину вводимой пробы, что в большинстве случаев (особенно в газоадсорбционном варианте) улучшает качество разделения компонентов анализируемой смеси. Однако в газожидкостном варианте, в особенности при высоких температурах хроматографических колонок, в некоторых случаях затруднительно применение детектора высокой чувствительности ввиду значительного фона, создаваемого за счет летучести жидкой фазы. [c.38]

    При газохроматографическом разделении алифатических аминов на пористых ароматических сорбентах наблюдаются размывание заднего фронта и большая асимметрия пиков аминов. По мнению авторов [30], размывание обусловлено существованием двух типов активных центров на полимере кислотных центров, которые можно нейтрализовать обработкой основанием, и ионов металлов, которые дезактивируются добавлением нелетучего комплексообразователя, например полиаминов. Времена удерживания алифатических аминов зависят от их структуры, причем порядок элюирования аналогичен наблюдаемому в газожидкостном варианте хроматографии на неполярных жидких фазах. Разделение аминов на пористых полимерах, модифицированных 1—5% полиэтиленимина, осуществляется главным образом адсорбцией на неполярном полистироле наблюдается линейная зависимость между температурой кипения аминов и логарифмом времени удерживания первичных, вторичных и третичных аминов. Добавление полиэтиленимина дезактивирует активные центры. При нанесении больших количеств полиаминов на пористые полимеры разделение амииов осуществляется комбинацией газоадсорбционной и газо-жидкостной хроматографии [30]. [c.33]

    Применение газоадсорбционной хроматографии на достаточно геометрически и химически однородных адсорбентах, обладающих вместе с тем достаточно большой удельной поверхностью для обеспечения высокой емкости, позволяет предотвратить характерное для газожидкостного варианта препаративной хроматографии загрязнение продуктов разделения парами неподвижной фазы. [c.378]

    Распределительная хроматография — это вариант ВЭЖХ, в котором разделение смеси на компоненты осуществляется за счет различия их коэффициентов распределения между двумя несмешивающимися фазами растворителем (подвижная фаза) и фазой на сорбенте (неподвижная фаза). Исторически первыми были сорбенты такого типа, которые получали нанесением жидких фаз (оксидипропионитрила, парафинового масла и др.) на пористые носители, аналогично тому, как готовили и готовят сорбенты для газожидкостной хроматографии (ГЖХ). Однако сразу же обнаружились и недостатки таких сорбентов, основным из которых было относительно быстрое смывание фазы с носителя. За счет этого количество фазы в колонке постепенно уменьшалось, времена удерживания также уменьшались, на начальном участке колонки появлялись не покрытые фазой центры адсорбции, вызывавшие образование хвостов пиков. С этим недостатком боролись, насыщая растворитель нанесенной фазой еще до его попадания в колонку. Унос также уменьшался, когда использовали более вязкие и менее растворимые полимерные фазы, однако в этом случае из-за затруднения диффузии из толстых полимерных пленок эффективность колонок заметно снижалась. [c.20]

    В основу метода газовой хроматофафии положен следующий принцип анализ смеси веществ в результате распределения компонентов между несмешивающимися фазами, одна из которых подвижная — инертный газ (азот, гелий), другая — неподвижная (высококипящая жидкость или твердая фаза). Этот метод имеет два варианта газоадсорбционная и газожидкостная хроматофафия. Разделение компонентов смеси происходит в хроматофафической колонке. Хроматофафи-ческие колонки набивного типа (длина 1—3 м, диамеф около 4 мм) делают из стекла, стали, а капиллярного типа (длиной до 50 м) — из стекла либо кварца. [c.246]

    В последнее время для анализа полярных веществ предложено использовать высокопористые сетчатые сополимеры дивинилбензола со Стиролом — поропакп и полисорбы. Они, в отличие от обычных носителей, не адсорбируют полярные вещества, даже вода и спирты имеют малое время удерживания и выходят симметричными пиками. Их можно применять как в газоадсорбционном варианте хроматографии, так и с небольшим количеством неподвижной фазы — в газожидкостном. На колонке 120 X 0,4 см, заполненной поропаком, при 200 " С получено хорошее разделение 8 низших гликолей и их эфиров, выходящих в такой последовательности метилцеллозольв, этиленгликоль, этилцеллозольв, к-пентанол (внутренний стандарт), изопропилцеллозольв, к-бутилцеллозольв, метилкарбитол, 2-ме-тИоЛпентан-2,4-днол и этилкарбитол. В течение месяца работы колонка давала полностью воспроизводимые результаты [27]. [c.342]

    В основе распределительной хроматографии лежит обмен хроматографируемым веществом между двумя фазами — подвижной и неподвижной, основанный на непрерывности в этих фазах. Разделение смеси веществ достигается за счет различия в коэффициентах распределения этих веществ между двумя несмешивающи-мися растворителями (жидкостно-жидкостная хроматография) или газом и жидкостью (газожидкостная хроматография). Неподвижной фазой в этом варианте хроматографии является пленка жидкости, нанесенная на поверхность гранул сорбента. Использование этого варианта хроматографии позволяет значительно расширить возможности разделения веществ, близких по строению и свойстаам, так как для каждой разделяемой смеси возможен подбор той неподвижной жидкой фазы, которая обеспечит наибольшую полноту разделения в данном конкретном случае. Выбор подвижной фазы (элюента) тоже очень важен. Имено к этому варианту хроматографического разделения относится метод высокоэффективной жидкостной хроматографии (ВЭЖХ), все более широко используемый в фармацевтическом анализе. ВЭЖХ применяют для разделения и количественного определения близких по хи- [c.209]

    Одной из важнейших характеристик детектора является чувствительность, поскольку она связывает сигнал детектора с измеряемой концентрацией и в значительной мере определяет аналитические возможности хроматографа в целом. В частности, от чувствительности детектора зависит выбор величины пробы и возможности использования различных типов хроматографических колонок. Так, применение микронабивных и капиллярных колонок возможно лишь с высокочувствительными детектирующими устройствами, а при работе с обычными набивными колонками могут использоваться и детекторы средней чувствительности — катарометр, плотномер. Применение высокочувствительных детекторов весьма желательно, так как позволяет значительно уменьшить величину вводимой пробы, что в большинстве случаев (особенно в газоадсорбционном варианте) улучшает качество разделения компонентов анализируемой смеси. Однако в газожидкостном [c.39]

    Все перечисленные варианты хроматографии применяются или могут быть использованы для анализа лакокрасочных систем и исходного сырья, в частности для- разделения сложных многокомпонентных смесей растворителей, масел, для анализа мономеров, контроля чистоты исходных и промежуточных продуктов, для определения примесей даже в следовых концентрациях, для идентификации органической частинеизвестных образцов и т. д. В данной книге, однако, невозможно рассмотреть все методы. В дальнейшем будет рассмотрена только газожидкостная проявительная роматография. Именно этот метод, благодаря присущим ему пре-муществам, в последнее десятилетие был особенно развит и ши-око используется в практике качественного и количественного ализа [c.17]

    Эффективным методом интенсификации газожидкостных процессов является, в особенности для многостадийных процессов, при наличии побочных реакций или значительного ингибирующего действия продуктов реакции совместное проведение нескольких консекутивных реакций в едином реакционном объеме или осуществление химической реакции совместно с физическим процессом разделения образующейся реакционной массы Если первый из этих методов известен давно и достаточно широко используется в химической технологии, то реакционно-массообменные процессы и аппараты для их осуществления появились в промышленности не более 20—25 лет тому назад и применяются в основном для периодических вариантов технологических процессов. Последнее обусловлено, по-видимому, тем, что не сформулированЬг основныё принципйИ %е разработаны [c.17]

    Ввел в практику хроматофафии поликапиллярные колонки для экспрессного разделения в газожидкостном и газоадсорбционном вариантах. [c.115]


Смотреть страницы где упоминается термин Разделение на ПКК в газожидкостном варианте: [c.9]    [c.22]    [c.123]    [c.57]    [c.35]    [c.147]    [c.123]   
Смотреть главы в:

Промышленный катализ в лекциях Выпуск4 -> Разделение на ПКК в газожидкостном варианте




ПОИСК





Смотрите так же термины и статьи:

Варианта



© 2024 chem21.info Реклама на сайте