Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты химический состав

    НУКЛЕИНОВЫЕ КИСЛОТЫ. ХИМИЧЕСКИЙ СОСТАВ, СТРУКТУРА, ФУНКЦИИ [c.171]

    По химическому составу вирусы являются нуклеопротеидами, т. е. состоят из белка и нуклеиновой кислоты. В состав вируса всегда входит только один какой-нибудь вид нуклеиновой кислоты— РНК (рибонуклеиновая кислота) или ДНК (дезоксирибонуклеиновая кислота). Нуклеиновая кислота является носителем инфекционных и наследственных свойств, белок же играет роль защитной оболочки. [c.41]


    Основные химические строительные блоки нуклеиновых кислот, в состав которых входят основания (А, Т, С, G или U). Они соединяются фосфодиэфирными связями, образуя полимерные цепи ДНК или РНК. [c.203]

    Для большинства веществ частицы представляют собой молекулы. Молекула — наименьшая частица вещества, обладающая его химическими свойствами. Молекулы в свою очередь состоят из атомов. Атом — наименьшая частица элемента, обладающая его химическими свойствами. В состав молекулы может входить раз личное число атомов. Так, молекулы благородных газов одно-атомны, молекулы таких веществ, как водород, азот,— двухатомны, воды — трехатомны и т. д. Молекулы наиболее сложных веществ — высших белков и нуклеиновых кислот — построены из такого количества атомов, которое измеряется сотнями тысяч. При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов, число различных веществ очень велико. [c.20]

    О том, как происходил отбор структур, каков его механизм, сказать довольно трудно. Но этот процесс оставил нам своего рода. музей. Подобно тому как из 107 химических элементов только 6 органогенов да 10—15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции происходил тщательный отбор и химических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен из 100 известных аминокислот в состав белков входит только 20 лишь четыре нуклеотида лежат в основе-всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. [c.196]

    В ТО же время бактерии бобовых растений, микроорганизмы почвы и водоросли в присутствии воды легко переводят атмосферный азот в аммиак при обычной температуре и нормальном давлении. Известно также, что атомы азота входят в состав нуклеиновых кислот и белков, играющих первостепенную роль в жизненных процессах. Долгое время оставалось загадкой, как в природных условиях в водной среде происходит биологическая фиксация азота, каков механизм связывания атмосферного азота с водородом й другими элементами при нормальном давлении и комнатной температуре. Основываясь на сходстве химических связей в молекулах азота и ацетилена, можно было предполагать, что синтез аммиака при обычных условиях может быть осуществлен при последовательном разрыве межатомных связей в молекуле N2 в присутствии соответствующего катализатора по схеме [c.122]


    Аминогруппа настолько химически активна и богата химическими взаимодействиями и реакциями, что все соединения с аминогруппами уже входят в биологические молекулярные структуры и обеспечивают переход от неживого вещества к живому, способствуют переходу от химической формы движения материи к биологической форме. Аминогруппы всех трех типов входят в состав белков и нуклеиновых кислот, главных молекул живого вещества. Амины могут быть линейными, если Ы-атом включен в углеродную цепь, и циклическими, если он замыкает углеродную цепь в цикл. [c.544]

    Другая, также важнейшая функция биополимеров связана с сохранением и передачей по наследству свойств живого индивида будущим его поколениям. Эта функция называется наследственностью. Ее выполняют нуклеиновые кислоты, биополимеры, в состав которых входят химически связанные азотистые основания с ядрами пурина и пиримидина, углеводы (дезоксирибоза) и остатки фосфорной кислоты. Нуклеиновые кислоты (РНК, ДНК) являются носителями закодированной в их структуре наследственной информации каждого живого индивида и передают ее по наследству, так как осуществляют биосинтез белка в живой клетке. [c.720]

    ХИМИЧЕСКИЙ СОСТАВ НУКЛЕИНОВЫХ КИСЛОТ [c.97]

    Химический состав клеток в принципе одинаков у всех организмов. Клетки прокариот содержат от 70 до 90 % воды. Основную массу сухих веществ, на долю которых приходятся остальные 10—30 %, составляют белки, нуклеиновые кислоты, липиды и полисахариды. Несколько процентов сухого вещества клеток приходится на низкомолекулярные органические вещества и соли (табл. 9). [c.81]

    Химический состав нуклеиновых кислот [c.171]

    Главную подгруппу V группы составляют азот, фосфор, мышьяк, сурьма и висмут. Каждый из элементов имеет электронную конфигурацию на внешнем уровне пз пр и может проявлять в своих соединениях степень окисления от -3 до +5. Азот и фосфор — типичные неметаллы, мышьяк проявляет и металлические свойства, сурьма и висмут — типичные металлы. Наибольшее значение из элементов данной группы имеют азот и фосфор. Оба этих элемента входят в состав живых организмов и очень важны для эффективного роста растений. Азот является одним из химических элементов белков, а фосфор — нуклеиновых кислот. Хорошо известно, что соединения азота и фосфора в составе удобрений вносят в почву для повышения урожайности. [c.187]

    Древесная зелень по химическому составу сходна с травой, но содержит меньше каротина В расчете на сухую массу в хвое содержится 6—12% протеина и нуклеиновых кислот, 70—80 % углеводов В состав протеина древесной зелени входят около 20 аминокислот, в том числе лизин, лейцин, изолейцин, валин и другие незаменимые аминокислоты Поэтому витаминная мука, получаемая путем измельчения и высушивания древесной зе лени, является эффективной белково витаминной добавкой к корму для скота и птицы По питательной ценности древесная зелень сходна с пшеничной и ржаной соломой Однако надо иметь в виду, что древесная зелень в отличие от травы содер жит алкалоиды, смолистые и дубильные вещества, поэтому [c.333]

    Производные пиримидина — урацил (За), тимин (36) и цитозин (4) — довольно широко распространены в природе и входят в состав нуклеиновых кислот в виде Ы-углеводных производных. Физические и химические свойства подобных производных пиримидина [c.303]

    Вариация структуры нуклеиновых кислот происходит за счет вариации последовательности гетероциклических оснований в их боковой части В состав ДНК входят в основном фрагменты аденина, гуанина, цитозина и тимина, РНК — фрагменты аденина, гуанина, цитозина и урацила Вторичная структура нуклеиновых кислот, представляющая собой двойную спираль переплетающихся двух полимерных цепей ДНК, двуспиральных фрагментов РНК, одноцепочечные участки РНК, обязана своим образованием возникновению водородных связей между пиримидиновыми и пуриновыми основаниями Это крупнейшее открытие XX века, сделанное Дж Уотсоном и Ф Криком в 1953 г (Нобелевская премия 1962 г ), стало возможным благодаря интеграции различных биологических, химических и физических методов исследования [c.928]

    Весьма вероятно, что упорядоченные сополимеры более сложного строения, чем рассмотренные, могут существовать среди природных фибриллярных белков и, возможно, нуклеиновых кислот. Хотя фибриллярные белки состоят из большого числа химически различающихся аминокислотных остатков, тем не менее, многие из этих остатков могут входить в одну и ту же кристаллическую решетку. Если бы все мономерные звенья принимали участие в процессе кристаллизации, следовало бы ожидать типичное для гомополимеров поведение при плавлении, несмотря на химически неоднородный состав цепи. Однако, если определенные звенья исключаются из кристаллизации вследствие стерических затруднений, то процесс плавления изменит свой характер на типичный для сополимеров. [c.114]


    Другую группу важнейших биологических высокомолекулярных соединений составляют нуклеиновые кислоты, в состав которых входят остатки фосфорной кислоты, пеп-тозановых сахаридов и пуриновых или пиримидиновых оснований. Более подробно строение и химические свойства нуклеиновых кислот рассматриваются в курсе биологической химии. [c.197]

    Химический состав вирусов с мелкими частицами отличается простотой они содержат белки и нуклеиновую кислоту, но почти лишены свободных углеводов и липидов. Большие же вирусные частицы имеют значительно более сложный состав и включают не только липиды, но также и различные ферменты [125]. Прн анализе Т-2 бактериофага Es heri hia oli было найдено, что он содержит 51% белка, 5—6% липндов и 40% нуклеиновой кислоты в состав нуклеиновой кислоты входит /е рибонуклеиновой кислоты и /б дезоксирибонуклеиновой кислоты [126]. [c.399]

    Химическими компонентами ядра являются в основном белки и нуклеиновые кислоты. Химическйй состав изолированных ядер, выделенных из проростков гороха (по А. Фрей-Вис-слингу и К. Мюлеталеру), % (по массе) ДНК—14, РНК—12,1,. основные белки — 22,6, другие белки — 51,4. [c.56]

    Ионизирующая радиация разрушает химические связи и таким образом расщепляет молекулу. При низком уровне радиации молекула разрушается немного, и систем1Я организма могут ликвидировать опасность. Однако при большей дозе, попющинной организмом, повреждается слишком много молекул. Наибольшую опасность представляют повреждения белков и нуклеиновых кислот. Белки охл-авляют основу мягких тканей организма, и входят в состав ферментов, молекул, контролирующих все жизненные процессы. Когда большое число молекул в непосредственной близости друг от друга разрушаются, организму н( хв 1тает молекул для поддержания жизнедеятельности. [c.353]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    К первому из них относят теории биогенеза, отправным постулатом которых является специфика вещественной основы биологических систем, т. е. строго определенный состав элементов-органогенов и не менее определенная структура входящих в живой организм химических соединений. Все особенности функционирования организмов, с позиций этих теорий, выводят из свойств конкретного биохимического состава организмов — белков, нуклеиновых кислот и других биополимеров. Решение проблемы биогенеза представители этого подхода видят в выяснении путей постепеннога усложнения органических соединений вплоть до белковоподобных [c.193]

    Бионеорганическая химия (подобно геохимии, биохимии, биофизике и др.) возникла на стыке неорганической химии и биологии в последнее десятилетие. Этому способствовала четкая формулировка ее основных задач — изучение на молекулярном уровне взаимодействий между металлами (в первую очередь биометаллами) и биолигандами протеинами, нуклеиновыми кислотами, их фрагментами и некоторыми другими находящимися в организме веществами (в том числе витаминами, гормонами, метаболитами и антиметаболитами). Более 100 000 процессов в организме человека представляют собой совокупность многих химических реакций, большинство из которых катализируется металлами, входящими в состав ферментов. [c.560]

    Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной имформации, а также определяют синтез нужных белков в клетке я его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные неразветвлет1ые) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК- [c.441]

    Скорость восстановления (ренатурации) двойной спирали зависит от вероятности столкновения двух комплементарных нуклеотидных последовательностей и их концентрации в растворе. Скорость реакции гибридизации можно использовать для определения концентрации любьсс последовательностей РНК или ДНК в смеси, содержащей и другие фрагменты нуклеиновых кислот. Для этого необходимо иметь чистый одноцепочечный фрагмент ДНК, комплементарный к тому фрагменту, который надлежит выявить. Обычно фрагмент ДНК, полученный клонированием либо химическим путем, метят по Р в целях прослеживания включения фрагмента в состав дуплексов при гибридизации. Одноцепочеч- [c.110]

    На понижении растворимости и переходе от полного смешения к ограниченной растворимости основаны также многочисленные случаи коацервации (Бунгенберг-де-Ионг). Так, например, коацерваты с расслоением в капельножидкой форме или в виде двух слоев могут быть получены из водных растворов желатины добавлением спирта или сернокислого натрия, из спиртовых растворов проламинов при разбавлении их водой, из положительно заряженных молекул желатины (при pH 1,2—4,8) и отрицательно заряженных частиц гуммиарабика или крахмалофосфорной кислоты, из растворов двух белков с сильно различными положениями изоточек, из растворов белка и нуклеиновых кислот и др. Во всех этих случаях коацерваты возникают в условиях перехода к взаимно ограниченной растворимости компонентов раствора. Степень расслоения полимеров при коацервации очень велика, например, при получении коацервата из 1%-ного раствора желатины до 93% ее количества входит в состав коацерватного слоя, а при более низких концентрациях — относительно еще больше поэтому оба слоя при коацервации резко различаются по содержанию коллоидных веществ. Физико-химические свойства коацерватов в ряде отношений напоминают соответствующие свойства протоплазмы, что привлекает к ним внимание биологов согласно Опарину, коацервация имела большое значение для пространственного отделения и организации коллоидных веществ в истории возникновения жизни на Земле. [c.187]

    Сенжер и Коулсон создали метод анализа последовательности ДНК, который основан на ферментативном копировании однонитевых частиц ДНК [18]. Максам и Гилберт создали метод, в основу которого положена химическая модификация четырех оснований, входящих в состав ДНК, и который с одинаковым успехом применим как к однонитевым, так и к двунитевым молекулам ДНК [19]. Оба метода используют авторадиографическое определение згр-меченных олигонуклеотидов, которые разделяют в зависимости от их длины электрофорезом денатурированных фрагментов в полиакриламидном геле. На практике, успех этих методов во многом определяется недавними достижениями в энзимологии нуклеиновых кислот, особенно использованием ферментов рестрикции, расщепляющих молекулы ДНК, и обратной транскриптазы, с помощью которой получают циклические ДНК, комплиментарные РНК-матрице. Нижеследующее описание методики анализа будет, однако, предполагать наличие гомогенных образцов ДНК подходящей длины. [c.188]

    Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков (см. главу 2) основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), пуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы). [c.72]

    Пуклеопротеины состоят из белков и нуклеиновых кислот. Последние рассматриваются как простетические группы. В природе обнаружено 2 типа нуклеопротеинов, отличающихся друг от друга по составу, размерам и физико-химическим свойствам,— дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНН). Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП—дезоксирибозой. Термин пуклеопротеины связан с названием ядра клетки, однако ДНП и РНП содержатся и в других субклеточных структурах. Следовательно, речь идет о химически индивидуальном классе органических веществ, имеющих своеобразные состав, структуру и функции независимо от локализации в клетке. Доказано, что ДНП преимущественно локализованы в ядре, а РНП —в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП. [c.86]

    Среди природных соединений важное место занимают углеводы. Они участвуют в построении живых структур, служат материалом для биосинтеза соединений других классов, им принадлежит важная роль в биоэнергетике клетки. Углеводы входят в состав физиологически активных гликозидов, нуклеиновых кислот, полисахаридов, гликолипидов и гликопротеидов. С ними связаны имму-нохимические свойства тканей, специфические реакции организма на внешние химические раздражители. Многочисленные превращения углеводов все шире используются промышленностью для получения синтетического волокна, в гидролизном производстве и пищевой промышленности. [c.3]

    Из мононуклеотидов построены нуклеиновые кислоты (РНК, ДНК) клеток. Кроме того, мононуклеотиды входят в состав многих коферментов и участвуют, таким образом, в осуществлении различных каталитических функций. Центральное место в биосинтезе мононуклеотидов занимает синтез пуриновых и пиримидиновых азотистых оснований. Больщинство прокариот способно к синтезу этих соединений de novo из низкомолекулярных пред-щественников. Синтез пуриновых и пиримидиновых мононуклеотидов осуществляется независимыми путями. В результате последовательных ферментативных реакций при синтезе пуриновых нуклеотидов образуется инозиновая кислота, из которой путем химических модификаций пуринового кольца синтезируются аде-ниловая (АМФ) и гуаниловая (ГМФ) кислоты. [c.90]

    До недавнего времени считалось, что обязательным компонентом всех ферментов являются белки. Был накоплен огромный материал, свидетельствующий, что именно белки способны опознавать определенные субстраты, обеспечивая тем самым высокую специфичность биологического катализа. Кроме того, многочисленные данные демонстрировали, что белки обеспечивают оптимальную ориентацию субстратов относительно функциональных групп фермента, осуществляющих химическое превращение. Этими группами в случае кислотного, основного и нуклеофильного катализа чаще всего являются группы, входящие в состав белка. В случае электрофильного и окислительно-восстановительного катализа в химическом превращении, как правило, участвуют специальные кофакторы — ионы металла или сложные органические молекулы. Но в этом случае белковая часть фермента организует работу кофактора так, чтобы обеспечивалась свойственная ферменту специфичность и одновременно с Высокой эффективностью реализовался каталитический потенциал кофактора. Однако в начале 80-х годов были от крыты и стали объектом интенсивных исследований ферменты, построенные из молекул рибонуклеиновых кислот (рибозимы). Интерес к этой группе ферментов резко усилился в связи с разработкой методов молекулярной селекции нуклеиновых кислот, позволившей, в частности, начать направленное конструирование рибозимов с разнообразными типами каталитической активности. [c.11]

    При отклонении pH на несколько единиц от нейтрального значения происходят ионизация групп N-11 в слабощелочной среде и протоиирование атомов азота пиридинового типа в кислой среде. В табл. 3.3. приведены значения рА для важнейших нуклеозидов. Однако надо иметь в виду, что в составе нуклеиновых кислот эти значения могут заметно отличаться от рА для свободных нуклеозидов. Следует подчеркнуть, что наиболее основными и нуклеофильными цeнтpa и в гетероциклах, как это следует из спектральных характеристик ионизованных форм этих гетероциклов и из квантово-химических расчетов, являются именно атомы азота пиридинового типа в составе цикла, а не экзоциклические аминогруппы, неподеленная пара электронов которых сопряжена с системой двойных связей кольца и групп С=0. В биологически значимом диапазоне pH уридин и тимидин не присоединяют протонов и не являются основаниями. В связи с этим широко используемый для гетероциклов, входящих в состав нуклеиновых кислот, собирательный термин <основания>, строго говоря, является некорректным. [c.72]

    Исторический очерк. К середине прошлого века было установлено, что способность к наследоаанию признаков определяется материалом клеточного ядра. В 186<) г. Ф. Мишер, исследуя химический состав ядер гнойных клеток, выделил из них вещество кислого характера, названное им нуклеином. Это событие расценивается сейчас как открытие нуклеиновых кислот. Сам термин нуклеиновые кислоты был введен в 1889 г., а в 1891 г. немецкий биохимик А. Кёс-сель описал гидролиз нуклеиновой кислоты, установив, что она состоит из остатков сахара, фосфорной кислоты и четырех гетероциклических оснований, принадлежащих к пуринам и пиримидинам. Он же впервые указал на существование двух типов нуклеиновых кислот. [c.296]

    Чаргафф СЬагда 1 Эрвин (р. 1905), американский биохимик. Окончил Венский университет (1926) с 1935 г.— в Колумбийском университете в Нью Йорке. Основные работы — по изуче нию химического состава и структуры нуклеиновых кислот, определил коли чественное соотношение азотистых оснований, входвщих в их состав (правило Чаргаффа). Это открытие было использовано Ф. Криком и Дж. Уотсоном При построении модели структуры ДНК. [c.298]

    Имеются два класса нуклеиновых кислот, различающихся мелсду собой по химической природе пентозы, входящей в состав их молекулы. Нуклеиновые кислоты, содержащие в своем составе -рибозу, называют рибонуклеиновыми кислотами, а нуклеиновые кислоты, углеводным компонентом которых является 2-дeзoк и-i/-pибoзa, носят название дезоксирибонуклеиновых кислот. Дезоксирибонуклеиновая кислота содержится в клеточных ядрах и является нуклеиновой кислотой, связанной с удвоением генов и мутациями. Рибонуклеиновая кислота содержится главным образом в цитоплазме. Она привлекала меньшее внимание исследователей, так как ей не приписывают особой роли в наследственности. Вирусы могут содержать нуклеиновую кислоту любого из этих типов [c.247]


Смотреть страницы где упоминается термин Нуклеиновые кислоты химический состав: [c.43]    [c.354]    [c.7]    [c.24]    [c.45]    [c.169]    [c.31]    [c.174]    [c.96]    [c.303]    [c.33]    [c.36]    [c.280]   
Основы биохимии (1999) -- [ c.190 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте