Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция значение

    Согласно [13], для отыскания экстремали м [х] при фиксированном значении параметра регуляции а используется алгоритм многократного решения системы уравнений, аппроксимирующий уравнение Эйлера, для функционала М [х ] [c.113]

    Энергия, необходимая для перевода молекулы из жидкости в газовую фазу без изменения ее температуры (теплота испарения), в расчете на 1 г при 373 К для воды является самой высокой теплотой испарения для всех известных жидкостей. Высокое значение теплоты испарения обусловлено громадным числом водородных связей, имеющихся в водных растворах. При 298 К испарение 1 моль воды требует 43 кДж, а это означает, что испарение воды в ходе транспирации сопровождается значительной потерей теплоты растением. Большая часть этой энергии испарения идет на то, чтобы разорвать водородные связи и дать молекулам воды возможность существовать в газовой фазе порознь. Потеря теплоты при испарении воды является одним из главных средств регуляции температуры у наземных растений. Тем самым рассеивается много теплоты, пришедшей в виде излучения, а также полученной в результате метаболической деятельности. [c.45]


    При обсуждении регуляторных систем в биологии и других областях их обычно рассматривают, используя понятие гомеостазиса, некоторые природные или созданные человеком приспособления (например, термостаты) регулируют скорость образования элемента системы таким образом, что его уровень сохраняется при оптимальном значении или колеблется около этого значения, которое обычно гораздо ниже величины, достигаемой в отсутствие такой регуляции. [c.349]

    Хромопротеиды. Под этим названием известны протеиды, которые представляют собой сочетание белков с окрашенными веществами. Из хромопротеидов наиболее изучен гемоглобин— красящее вещество красных кровяных шариков. Гемоглобин, соединяясь с кислородом, превращается в оксигемоглобин, который, отдавая свой кислород другим веществам, снова превращается в гемоглобин. Значение гемоглобина в жизни человека и животных очень велико. Он играет роль переносчика кислорода от легких к тканям. Образовавшийся в легких оксигемоглобин кровью разносится по телу и, отдавая свой кислород, способствует протеканию в организме окислительных процессов. Кроме того, гемоглобин вместе с плазмой крови осуществляет регуляцию величины pH крови и перенос углекислоты в организме. [c.392]

    Среди указанных эффекторов наиболее важное значение для регуляции ферментативной активности имеют ингибиторы (АТФ, цитрат) и активаторы (фруктозо-6-фосфат, фруктозо-1,6-дифосфат, фруктозо- [c.238]

    Скорость транскрипции регуляторных генов обычно очень низка, но держится на постоянном уровне. Возможно, это объясняется тем, что РНК-полимераза медленнее инициирует синтез цепей РНК на промо-торных участках регуляторных генов. Так, в каждой клетке Е. соН в норме содержится всего лишь около 10 молекул /ас-репрессорного белка. Поскольку репрессоры имеют очень важное значение для регуляции метаболизма, регуляторные гены представляют чувствительные участки для мутаций. Так, например, мутация регуляторного гена может привести к образованию дефектного репрессора, неспособного более [c.202]

    Значение IS-элементов для эволюции бактерий связано с тем, что эти элементы при своих перемещениях инактивируют разл. гены или нарушают их нормальную регуляцию. Помимо прямого влияния на экспрессию гена (раз- вития признака, контролируемого данным геном) вследствие транспозиции инсерционной последовательности непосредственно в кодирующую часть гена или его регуляторную зону, эти М. г. э. могут влиять также на транскрипцию (биосинтез информационной РНК на матрице ДНК) окружающих их последовательностей ДНК генома. Это происходит вследствие того, что мн. IS-элементы содержат промоторные (инициирующие транскрипцию) и термина-торные (прекращающие транскрипцию) участки ДНК. Транспозиции IS-элементов могут вызывать слияние двух не [c.79]


    Энергетический заряд может меняться от нуля, когда присутствует только АМР, до 1,0, что означает превращение в АТР всех молекул АМР. Измерения, выполненные на целом ряде клеток и тканей , показывают, что энергетический заряд обычно лежит в пределах от 0,75 до 0,90. Найти численное значение этой величины не составляет труда, однако, к сожалению, она оказывается не связанной с химическими уравнениями. Предположение о важной роли энергетического заряда клетки в регуляции метаболизма весьма сомнительно . [c.222]

    Кооперативный характер связывания ферментов с субстратами имеет, пожалуй, такое же большое физиологическое значение, как и кооперативное связывание гемоглобина с кислородом, которое обеспечивает более эффективное высвобождение связанного кислорода в тканях (гл. 4, разд. Д, 5). Кооперативность связывания субстрата отсутствует в том случае, когда благодаря избытку активатора фермент переходит в состояние R (В), при котором связывающие центры ведут себя независимо. В то же время связывание активатора должно характеризоваться сильно выраженной кооперативностью, т. е. скорость реакции должна изменяться при изменении концентрации активатора сильнее, чем в случае гиперболической активации. Аналогичным образом кооперативное связывание ингибитора обеспечивает более быстрое выключение фермента при увеличении концентрации ингибитора. По-видимому, эволюция олигомерных ферментов (по крайней мере отчасти) обусловлена большей эффективностью механизмов регуляции, в основе которых лежит кооперативное связывание эффекторов. [c.39]

    Эффекты ингибирования и активации катализаторов имеют существенное значение в процессах регуляции их активности в сложных, в частности физиологических, системах. Ингибиторные методы служат в качестве инструмента для изучения структуры и механизма каталитического действия активных центров. Ниже описаны наиболее часто встречающиеся типы ингибирования и активации. Графические способы анализа кинетических данных иллюстрирует рис. 16.2. [c.474]

    В связи с возрастающим значением биохимии для практики здравоохранения особое внимание уделено регуляции и патологии обмена углеводов, жиров, белков и аминокислот, включая наследственные дефекты обмена, а также изложению практического использования биохимических тестов для постановки диагноза заболевания, выбора метода лечения и проверки его эффективности. [c.10]

    Существенно переработаны в свете новых данных главы, посвященные обмену веществ. Учитывая все возрастающее значение биохимии для медицины, особое внимание уделено регуляции и патологии обмена углеводов, липидов, белков и аминокислот, включая наследственные нарушения обмена. Обстоятельно изложены многие вопросы, которым не всегда уделялось в курсе биологической химии (особенно в учебниках по биологической химии, переведенных с английского языка) должное внимание. Это касается, в частности, особенностей химического состава и процессов метаболизма в норме и патологии таких специализированных тканей, как кровь, печень, почки, нервная, мышечная и соединительная ткани. [c.11]

    Основным условием существования любых живых организмов является наличие тонкой, гибкой, согласованно действующей системы регуляции, в которой все элементы тесно связаны друг с другом. В белковом синтезе не только количественный и качественный состав белков, но и время синтеза имеют большое значение. От этого зависит приспособление микроорганизмов к условиям окружающей питательной среды как биологической [c.534]

    Окраска и характер ее распределения, особенно у животных, имеют большое значение в поведенческом и экологическом аспектах, однако они могут оказаться малоинтересными в аспекте биохимическом, если не считать, конечно, идентификации участвующих в их образовании пигментов. Вместе с тем существует ряд биохимических вопросов, достойных внимания, которые все еще остаются без ответа. Особый интерес вызывают вопросы, касающиеся механизмов регуляции синтеза пигментов и отложения их в тканях, а также изменения окраски. В качестве примера можно назвать механизмы, с помощью которых факторы окружающей среды (такие, как свет и температура), вероятно, при участии гормонов вызывают быстрые или медленные изменения окраски, или пути, по которым реализуется генетический контроль распределения окраски. В настоящее время биохимические аспекты этих явлений еще чрезвычайно трудны для изучения, но они несомненно привлекут значительно большее внимание исследователей в ближайшем будущем. [c.294]

    Как уже отмечалось в 6.3, важным путем воздействия на активность ферментов является аллостерическая регуляция. Значение такой регуляции было продемонстрировано на примере фосфофруктокииазы ( 9.7). Этот фермент занимает [c.422]

    Селективное извлечение Си, С(1 и и из растворов при их совместном присутствии достигается регуляцией значений pH. Для этого к раствору, содержащему 0,5 г/л С(1 , 0,308 г/л Си и 1,28 г/л Ш , имеющему pH 3,1, при непрерьшном перемешивании добавляли биомассу бактерий до конечной концентрации 0,83 г/л (по сухому весу). Через 15 минут флокулировав-шую биомассу отделяли центрифугированием и обработку повторяли при том же pH. После четьфехкратной обработки при pH 3,1 кош1ентрация урана в растворе снижалась до 0,0005 г/л. Сорбция урана достигала 0,37 г/г биомассы (по сухому весу). [c.365]


    Согласно вышеизложенному, значение нуклеозидфосфатов (нуклеотидов) обусловлено не только их ролью, которую они играют в биополимерах. Некоторые мономерные нуклеотиды весьма важны как форма хранения энергии (АТР), при регуляции (циклические нуклеотиды) и в качестве кофакторов (ЫАО+ и NADP+ гл. 7). [c.132]

    Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной имформации, а также определяют синтез нужных белков в клетке я его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные неразветвлет1ые) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК- [c.441]

    При каждом клеточном делении каждая молекула ДНК должна удваиваться, т. е. на каждом ориджине должен происходить в точности один акт инициацни репликации. В противном случае постепенно происходила бы утеря репликона или его бесконтрольное накопление. Более того, даже если репликон удваивается в среднем точно один раз на каждое клеточное деление, возможны существенные вариации количества копий этого репликона вокруг среднего значения в разных клетках бактериальной популяции. Такие вариации недопустимы, так как тоже в конце концов ведут к потере репликона. Таким образом, к регуляции репликации предъявляются достаточно жесткие требования регуляторная система должна чувствовать отклонения в обе стороны от среднего числа копий данного репликона и соответствующим образом менять частоту инициации на ориджине. Очевидно, что частота инициации должна быть согласована также со скоростью роста клеток. [c.63]

    Приведенная краткая характеристика книги О. М. Авакяна свидетельствует об ее несомненном теоретическом и практическом значении. 16 января 1986 г. О. М. Авакян безвременно скончался. Его шoгoчи лeнныe научные труды, монографии и эта последняя книга будут служить фармакологам, физиологам, биохимикам, химикам, а также практическим врачам, интересующимся фармакологической регуляцией функции снмпатико-ад-реналовой системы. [c.4]

    Известно больщое число ферментов со < сложной негиперболичес-кой кинетикой. Одна из причин отклонения от кинетики Михаэлиса— Ментен может быть связана с аллостерическими свойствами фермента. Для регуляторных ферментов кривая зависимости скорости реакции от концентрации субстрата часто имеет сигмоидальную форму. При наличии 5-образности резкое увеличение активности происходит в узкой области концентрации субстрата, что может иметь важное значение для функционирования фермента в клетке. В аллостерической регуляции ферментативной активности принимают участие не только [c.214]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]

    Возможно, функция марганца состоит в регуляции активности ферментов. Например, известно, что глутаминсинтетаза (гл. 14, разд. Б, 2) в одном из состояний активна только в присутствии Mg +, но при аденилировании прочно связывает Мп +. Многие нуклеазы и ДНК-полимеразы при замещении Mg + на Мп + изменяют свою специфичность. Каково значение этих различий in vivo, сказать пока трудно, но о них следует помнить. [c.53]

    На основе описанных выше данных была сформулирована современная точка зрения, согласно которой основная функция гистонов состоит в том, чтобы обеспечить необходимую упаковку ДНК. Однако иногда гистон Н1 называют общим репрессором, удерживающим хроматин в компактно упакованном состоянии, препятствующем транскрипции. Поскольку процесс инициации митоза сопровождается фосфорилированием гистона Н1 при помощи специальной протеинкиназы, можно предположить, что этот гистон играет какую-то иную роль [ЗОО]. Другие гистоны, особенно Р4, подвергаются множеству модифицирующих воздействий, в том числе ацетилированию и фосфорилированию (обратимо) и -метилированию (необратимо) [301]. Значение этих реакций в регуляции таких процессов, как транкрипция и репликация, до сих пор неясно. [c.304]

    На О.в. постоянно оказывают воздействие разл. факторы внеш. и внутр. среды. Большая часть из них эффективно используется организмами для своего роста и развития. Это происходит благодаря функционированию механизмов регуляции О.в. Наиб, простым из шгх. способствующим сохранению внутр. среды организма (поддерживанию гомеостаза), является механизм восстановления в хим. системе равновесия в соответствии с законом действующих масс. Благодаря этому значения pH в буферных жидкостях организма устойчивы к случайным воздгпствням. Предотвращение накопления в организме невыводимых продуктов О.в. также осуществляется благодаря восстановлению равновесия в замыкающих участках циклич. путей О.в. [c.317]

    Физиол. значение П. л. до конца не установлено. Считается, что ему принадлежит существ, роль в развитии молочных желез, стимуляции лактогенеза на его ранней стадии, а также в регуляции углеводного и белкового обмена во время беременности и обеспечении нормального роста плода. В процессе беременности концентрация П. л. в крови постепенно нарастает, достигая максимума в позднем периоде беременности и резко падая тотчас после родов. Биол. активность препаратов П. л. качественно сходна также с активностью гипофизарных гормонов пролактина и соматотропина, но проявляется в значительно меиьшей степени (напр., его ростостимулирующая активность примерно в 100 раз ниже, чем у соматотропина). [c.572]

    Для мн. пре-РНК известны альтернативные пути С., дающие множественные формы зрелой РНК из транскрип-тов одного гена. Это может иметь значение как один из механизмов регуляции экспрессии генов, а также как ср-во увеличения кодирующей емкости генома (экспрессия одного [c.410]

    Известны ферменты (и число их непрерывно растет), которые наряду с каталитическими субъединицами, несущими активные центры, содержат регуляторные субъединицы, слабо (или, напротив, сильно) взаимодействующие с каталитическими субъединицами и выступающие в роли аллостерических модификаторов. В свою очередь регуляторные субъединицы могут претерпевать конформационные изменения, индуцируемые связыванием ингибиторов или активаторов. Наилучшим примером такого рода служит аспартат—карбамоилтрансфераза (гл. 4, разд. Г). Ее регуляторные субъединицы содержат центры связывания цитидинтрифосфата (СТР), который выступает в роли специфического ингибитора фермента. Значение этого ингибирования с точки зрения регуляции становится очевидным, если учесть, что аспартат—карбамоилтрансфераза катализирует первую реакцию пути синтеза пиримидиновых нуклеотидов (гл. 14, разд. Л, 1). СТР является конечным продуктом этого пути и вызывает ингибирование фермента по принципу обратной связи. [c.39]

    Было высказано предположение, что концентрация ионов Mg +, так же как и концентрация ионов Н+, остается в состоянии подвижного равновесия с сывороткой крови . Тем не менее, по-видимому, возможны ситуации, когда происходят по крайней мере временные изменения концентрации свободных ионов Mg + и свободных ионов Н+б. При быстром катаболизме углеводов гликолиз может привести к закислению мышечных клеток, причем значение pH может падать от 7,3 до 6,3. Падение pH вызывает значительное снижение степени связывания Mg + с такими молекулами, как АТР, и временное увеличение концентрации ионов Mg +. Подобным образом высвобождение дифосфоглицерата из комплекса с гемоглобином при оксигенацни приводит к снижению концентрации свободного Mg +, так как последний связывается с дифосфоглицератом . Эти изменения концентрации свободного Mg + могут иметь большое значение в метаболической регуляции .  [c.130]

    Церулоплазмин представляет собой голубой белок с мол. весом 150 ООО и содержит 8 ионов Си+ и 8 ионов Си +. Это главный медьсодержащий белок крови, и на его долю приходится 3% общего содержания меди в организме. Церулоплазмин, по-видимому, каким-то образом связан с регуляцией содержания меди в организме так, при болезни накопления меди (болезни Вильсона) содержание церулоплазмина оказывается низким. Кроме того, церулоплазмин обладает ферментативными свойствами, напоминая в этом отношении лакказу он тоже может катализировать окисление Fe + в Fe3+. Последняя реакция имеет важное значение, поскольку лишь Fe + может присоединяться к транспортирующему железо белку трансферрину (дополнение 14-Г). По этой причине церулоплазмин иногда называют ферроксидазой. [c.448]

    В белковой части фермента может находиться и аллостери-ческий центр, имеющий большое значение в регуляции ферментной активности. После присоединения к этому центру соответствующих веществ — эффекторов активность фермента изменяется. Конечные продукты ферментативных реакций обычно являются негативными эффекторами — присоединение их к ал-лостерическому центру фермента уменьшает его активность. Вещества, присоединение которых к аллостерическому центру молекулы фермента вызывают увеличение активности, называют позитивными эффекторами. [c.29]

    Следует указать также на особое значение соотношения в крови тромбо-ксаны/простациклины, в частности TxA,/PGI, для физиологического статуса организма. Оказалось, что у больных, предрасположенных к тромбозам, имеется тенденция к смещению баланса в сторону агрегации у больных, страдающих уремией, напротив, наблюдается дезагрегация тромбоцитов. Выдвинуто предположение о важности баланса TxA,/PGI, для регуляции функции тромбоцитов in vivo, сердечно-сосудистого гомеостаза, тромботической болезни и т.д. [c.286]

    Еще сравнительно недавно протеиназы традиционно связывали только с процессами переваривания. В настоящее время появляется все больше данных о более широкой биологической роли протеолитических ферментов органов и тканей в регуляции ряда вне- и внутриклеточных процессов. Некоторые протеиназы выполняют защитную функцию (свертывание крови, система комплемента, лизис клеток), другие генерируют гормоны, токсины, вазоактивные агенты (ангиотензин, кинины). Ряд протеиназ регулирует образование пищеварительных ферментов, взаимодействие между клетками и клеточными поверхностями, процессы фертилизации (хитин-синтетаза) и дифференциации. Регуляция в большинстве случаев предусматривает превращение неактивного предшественника в активный белок путем отщепления ограниченного числа пептидов. Этот процесс, впервые описанный К. Линдерстрем-Лангом еще в 50-е годы, в последнее время называют ограниченным протеолизом. Значение его очень важно для понимания сущности биологического синтеза в клетках неактивных пре-и пробелков. Кроме того, этот процесс нашел широкое практическое применение в лабораториях и промышленности. В регуляции действия протеолитических ферментов участвуют также ингибиторы протеиназ белковой природы, открытые не только в поджелудочной железе, но и в плазме крови, курином яйце и т.д. [c.423]

    Наряду с утилизацией глюкозы в печени происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени происходит в основном фосфоролитичесюгм путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов. Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза. [c.553]

    Апобелки выполняют не только структурную функцию, но и обеспечивают активное участие комплексов ЛП в транспорте липидов в токе крови от мест их синтеза к клеткам периферических тканей, а также обратный транспорт холестерина в печень для дальнейших метаболических превращений. Апобелки выполняют функцию лигандов во взаимодействии ЛП со специфическими рецепторами на клеточных мембранах, регулируя тем самым гомеостаз холестерина в клетках и в организме в целом. Не меньшее значение имеет также регуляция апобелками активности ряда основных ферментов липидного обмена лецитин-холестеролацилтрансферазы, липопротеинлипазы, печеночной триглицеридлипазы. Структура и концентрация в плазме крови каждого апобелка находится под генетическим контролем, в то время как содержание липидов в большей степени подвержено влиянию диетических и других факторов. [c.576]

    Регуляция развития хлоропластов светом. Окончательное состояние тилакоидных мембран зависит от условий окружающей среды, главным образом от освещения. Хлоропласты, развивавшиеся при высоких интенсивностях освещения, имеют относительно небольшие, но высокоэффективные ФС I и ФСН, тогда как ССК У них редуцированы. При более низких интенсивностях освещения, при которых поглощение света должно быть по возможлости максимально эффективным, большое значение имеет синтез ССК, связанный с организацией тилакоидов в граны. Имеются сообщения, что первичными регуляторами развития хлоропластов служат красный свет и фитохромнаЯ система. Однако, согласно другим сообщениям, важную роль в данном случае играет синий свет и пока еще неизвестный фоторецептор. [c.359]

    Межнуклеиновое и нуклеиново-белковое молекулярное узнавание. Нуклеиново-белковое взаимодействие имеет важнейшее значение для регуляции биосинтеза белка, для регуляции действия генов. [c.221]


Смотреть страницы где упоминается термин Регуляция значение: [c.351]    [c.181]    [c.129]    [c.110]    [c.219]    [c.260]    [c.296]    [c.241]    [c.181]    [c.550]    [c.554]    [c.642]    [c.295]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционный механизм регуляции метаболизма понятие о метаболоне, его структура, физиологическое значение образования

Значение процессов регуляции

Значение регуляции обмена углеводов для поддержания нормального уровня глюкозы в крови

Регуляция



© 2025 chem21.info Реклама на сайте