Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкий кристалл теория образования

    Делаются попытки объяснить некоторые процессы, протекающие в живых организмах с помощью теории жидких кристаллов. Протоплазма живой клетки по ряду свойств близка к жидкокристаллическому состоянию. Распространение импульса возбуждения по нерву может быть описано переходами различных жидкокристаллических состояний. Возникновение жизни на уровне самосборки надмолекулярных структур, возможно, по своему механизму близко к образованию жидкокристаллических структур. [c.167]


    Заметим, что метастабильное состояние нематических жидких кристаллов (при Т > Т ), стабилизированное полем поверхностных сил, наблюдалось экспериментально [87, 88], что подтверждает правильность рассмотренной теории. Действие поверхностных сил, как показано в работе [89], может вести для некоторых жидких кристаллов также и к обратному эффекту — образованию (при Т < Т ) изотропной приповерхностной фазы в контакте с объемным жидкокристаллическим состоянием. [c.212]

    Нетрудно видеть, что определяемая нами скорость роста v r, I) микро-кристаллов является именно той скоростью роста частиц, которая фигурирует во всех теориях образования новой фазы (твердой или жидкой) и выражается обычно уравнением Нернста — Нойеса. Но это уравнение, выведенное для больших поверхностей, совершенно не учитывает влияния размера частицы на скорость ее роста. В действительности радиус частицы настолько сильно влияет на скорость роста малых частиц, что игнорировать это влияние при построении теории формирования повой фазы совершенно недопустимо. [c.201]

    Как связано решение перечисленных выше очередных задач статистической физики полимеров с уже решенными вопросами физики макромолекул Что касается теории молекул биополимеров, то ее тесная связь с общей теорией макромолекул совершенно очевидна и не нуждается в пояснениях. Теория блочных полимеров на первый взгляд менее непосредственно связана с теорией отдельных макромолекул. Однако из представлений Флори, Гиббса и Ди Марцио, кратко изложенных в 19, следует, что и в этом случае-основную роль в образовании всевозможных типов надмолекулярных структур играет жесткость определенных отрезков макромолекул, благодаря которой прослеживается далеко идущая аналогия между многими свойствами полимеров и жидких кристаллов. Поэтому можно думать, что изложенные в настоящей книге идеи и методы конформационной статистики макромолекул будут иметь существенное значение для новых разде. юв теории полимеров—теории молекул биополимеров и теории надмолекулярных структур. [c.387]

    Теория электрокристаллизации должна объяснять течение катодного процесса, начиная от появления после разряда первых свободных атомов и зародышей кристаллов в виде кристаллических или коллоидных частиц и вплоть до формирования кристаллов и образования металлических покрытий на катодах. Эти процессы во многих случаях находятся в тесной связи с процессами в прикатодном слое, преимущественно в жидкой фазе, т. е. с теми явлениями, для объяснения которых возникли теории, рассмотренные в предыдущем параграфе. [c.350]


    Образование доменов при деформировании неоднократно наблюдали и для низкомолекулярных жидких кристаллов. Обычно они появляются при скоростях, превышающих некоторую критическую, и исчезают при снятии гидродинамического поля. Теории гидродинамических искажений [3, с. 207 10, 67, 81] объясняют образование доменов при течении воздействием на молекулы моментов сил (вследствие анизотропии вязкости), заставляющих их выстраиваться под определенными углами к направлениям потока и градиента скорости. Сопоставление условий образования доменов в низкомолекулярных и полимерных жидких кристаллах свидетельствует об их резком различии в растворах ПБА доменное структурирование имеет место только при скоростях не [c.201]

    Сборник содержит в основном обзоры по структуре, росту п свойствам кристаллов. Публикуемые материалы отражают современное состояние исследований в области теории симметрии, структуры жидких кристаллов, механизмов зарождения и роста кристаллов, образования дефектов ири кристаллизации. Приводятся методы и результаты изучения реальной структуры кристаллов и ее связи с оптическими, механическими, электрическими и магнитными свойствами. Специальный раздел посвящен фазовым переходам, оптическим, магнитооптическим, фото- и сегнетоэлектрическим явлениям в кристаллах. [c.4]

    Поскольку мерой скорости растворения кристалла служит скорость образования вогнутых двумерных зародышей на поверхности растворяющегося кристалла, и эта скорость пропорциональна то уравнением (5.24), а следовательно, и (5.25) описывается в принципе и процесс растворения. Исходя из молекулярно-кинети-ческой теории, уравнения, аналогичные (5.24) и (5.25), можно вывести также для линейной скорости роста и испарения жидких [c.93]

    Несмотря на все достоинства этой теории, она обладает рядом недостатков и не охватывает всего многообразия свойств жидких тел. Дальнейшее развитие знаний в области жидкого состояния неизбежно окажет положительное влияние на понимание процессов роста и образования кристаллов, а также их растворения. [c.99]

    Зарождение кристаллов происходит в результате перехода растворенного в жидкой фазе вещества в твердое состояние. Этот процесс может происходить только при наличии определенного пересыщения раствора. Фактически в растворе образуются зародыши новой фазы в некотором интервале размеров. Теория гомогенного образования зародышей утверждает, что только те зародыши, образованные в результате флуктуаций параметров среды, чьи размеры больше некоторого критического размера г., способны далее расти в пересыщенном растворе. Более мелкие фракции либо растворяются, либо могут образовывать агломераты (размера больше критического) и далее расти. Таким образом, спонтанное (флуктуационное) зарождение новой фазы представляет собой динамический процесс, описание которого проводится на основе соответствующего кинетического уравнения [2, 3]. [c.331]

    Херд [34] подвел итог различным теориям, которые выдвигались ранее относительно образования и структуры гелей кремнезема. Эти теории включают эмульсионную теорию, согласно которой кремнезем следует рассматривать как чрезвычайно вязкую жидкую фазу целлюлярную теорию, по которой воду рассматривают как содержащуюся в сплошной фазе кремнезема в виде капелек, и фибриллярную теорию, предполагающую, что кремнезем существует в виде смешанной массы фибрилл с водой в порах. Разновидности фибриллярной теории включают исключающие друг друга точки зрения 1) что структура образуется при коагуляции коллоида 2) что кремневая кислота присутствует в виде тонких кристаллов и 3) что фибриллы образуются большими молекулами поликремневой кислоты. Последнюю точку зрения поддерживает Херд. [c.46]

    Зарождение кристаллов в жидкой фазе. Образование кри сталлических зародышей в жидкой фазе отличается от проанализированного выше случая прежде всего тем, что вместо частоты соударений газовых молекул до берут в соответствии с теорией абсолютных скоростей реакции частоту VI, с которой атом преодолевает энергетический барьер на границе ме- [c.418]

    Механизм зарождения кристаллов в переохлажденных гомогенных расплавах исследован недостаточно полно. Наиболее приемлемое объяснение явления образования центров кристаллизации в объеме переохлажденной жидкой фазы дает теория гетерофазных флуктуаций, разработанная Френкелем [18]. Согласно этой теории, вблизи точки плавления в расплаве возникают местные и временные флуктуации, которые представляют собой скопления с ориентированным расположением молекул — наподобие кристаллической решетки. Состояние этих скоплений неустойчивое наряду с образованием наблюдается и распад их. Объединение возникших структурных образований может явиться зародышем, из которого в последующем вырастает кристалл. [c.49]


    Другая, еще не решенная проблема связана с тем фактом, что энергия фотона, поглощаемого оптическим сенсибилизатором, меньше энергии фотона, поглощаемого самим бромистым серебром при образовании скрытого изображения. Возможно, что вся проблема является кажущейся, как это указали Франк и Теллер [22]. Мотт и другие показали, что тепловая энергия активации процесса электронного перехода в кристалле меньше оптической энергии активации. Разность энергий происходит за счет энергии, выделяющейся при переходе ионов решетки в новые положения, соответствующие тепловому равновесию в возбужденном состоянии. Если эта энергия может быть использована в акте сенсибилизации, то энергетическая проблема отпадает. В последнее время Мотт предложил механизм, согласно которому образование связи между красителем и галоидным серебром во много раз увеличивает вероятность процесса возбуждения, который возможен и в чистом галоидном серебре, но с весьма малой вероятностью [26]. Другие авторы [27] полагают, что восполнение дефицита энергии происходит за счет термической активации с участием многих степеней свободы молекулы. Ключ к решению этой проблемы, повидимому, еще не найден, однако любая теория этого явления должна объяснить наблюдающийся а опыте низкий температурный коэффициент сенсибилизации. Сенсибилизация при температуре жидкого азота менее эффективна, чем при комнатной температуре, однако падение сенсибилизации для некоторых красителей сравнительно мало и температурный коэффициент соответствует значению тепловой энергии активации, которая могла бы потребоваться в процессе сенсибилизации, не более чем 2 ккал/моль [28, 29]. Немногочисленные литературные данные по температурному коэффициенту светочувствительности, созданной оптическим сенсибилизатором, не укладываются в экспоненциальную зависимость светочувствительности от /Т, однако совершенно ясно, что тепловая энергия активации при сенсибилизации мала. [c.270]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    Мы не будем касаться здесь подробно рассмотренных причин и теорий складывания цепей, а отметим, еще раз, что топоморфизм— одна из основных характерных черт надмолекулярной организации кристалло-аморфных полимеров. В гл. XV мы увидим, что даже большую роль он играет при образовании термотропных полимерных жидких кристаллов. [c.100]

    Совместно с Ельяшевич [239] нам удалось сформулировать условия возникновения порядка в системах полимер — растворитель в цепях с ограниченной вращательной подвижностью, характеризуемой параметром Флори /. Хотя речь идет о давней работе и мы пользовались еще более давней теорией Флори, основанной на выражении для энергии Гиббса системы полужесткий полимер — растворитель, включающей параметр гибкости / и основанной на решеточной модели, мы полагаем, что этот подход поучителен и сохранил значимость до настоящего времени, хотя многие детали теории изменились. К тому же цитированные работы были в свое время восприняты как нетипичный курьез и сейчас полузабыты, тогда как за истекшее время выяснилось, что многие полужесткоцепные полимеры, и в первую очередь биополимеры, способны к образованию бинарных упорядоченных форм, и простое сопоставление энергий Гиббса позволяет выяснить, которое из состояний предпочтительнее аморфное, мезоморфное или кристаллическое. Приводимый ниже анализ имеет значение и для гл. XV, ибо лишь сравнительно недавно способность некоторых лиотропных полимерных жидких кристаллов превращаться в студневидные или жесткие кристаллосольваты была переоткрыта . [c.340]

    В теории Флори доминировали факторы упаковки, а межмолекулярные взаимодействия играли второстепенную роль и ими вообще пренебрегали. В низкомолекулярных жидких кристаллах взаимодействия обязательно должны быть сильными, чтобы в определенном диапазоне температур подавить броуновское движение, приводящее к беспорядку. Поэтому задача о термотропных полимерных жидких кристаллах ставится так поскольку достичь полного беспорядка в полужесткоцепных полимерах, сломав или скрутив их и получив изотропный расплав, невозможно, надо ввести мезогенные звенья — аналоги молекул, способных к образованию термотропной мезофазы — в макромолекулярную цепь. Сделать это можно двумя путями включить их в главную цепь или боковые группы. [c.359]

    Исследуя мезогенные соединения, Майер и Заупе пришли к выводу, что для образования жидкокристаллического состояния наличие собственного дипольного момента не обязательно. Авторы работы [3] предложили молекулярно-статистическую теорию для нематических жидких кристаллов, учитывающую межмолекуляр-ное взаимодействие, обусловленное собственными ди-польными моментами, однако вклад этого вида взаимодействия, по мнению Демуса [15], очень мал. В то же время, сопоставляя известные к настоящему времени жидкокристаллические соединения, можно увидеть, что не обладающие дипольным моментом соединения чаще всего образуют смектические фазы, как, например, в случае 4,4 -диалкил- -терциклогексанов или 4,4 -диалкил-л-терфенилов [11]. При введении в молекулу полярных заместителей, обусловливающих появление дипольного момента, повышается температура фазовых переходов. При этом часто расширяется интервал мезофазы  [c.15]

    Как отмечено, жидкие кристаллы характеризуются ближним порядком в расположении центров тяжести молекул и параллельностью нх длинных осей. Переход твердого тела в жидкий кристалл соответствует ликвидации дальнего порядка в расположении центров тяжести молекул при сохранении дальнего порядка в их ориентации. Переход жидких кристаллов в изотропную жидкость сопровождается ликвидацией дальнего порядка и в ориентации молекул. Последний переход Френкель называет ориентационным плавлением . Согласно теории Френкеля, вблизи точки перехода одной фазы в другую образование зародышей новой фазы происходит еще до достижения точки превращения. В старой фазе возникают местные и временные флуктуации, называемые гетерофазными. Цветков распространил теорию гетерофазных флуктуаций на переходы типа жидкий кристалл — изотропная жидкость. По его мнению, в изотропножидкой фазе около точки превращения имеет место образование зародышей жидких кристаллов (роев). Этот факт подтверждается аномальным изменением ряда физических величин (двулучепреломление в потоке, скорость и поглощение ультразвука и др.) вблизи точки превращения изотропной жидкости в жидкий кристалл. Например, величина двойного лучепреломления в потоке изотропножидкого п-азоксианизола начинает возрастать еще за несколько градусов до этой температурной точки (134°) . [c.96]

    Дальнейшее развитие теории ДЭС идет в основном по линик построения еще более сложных моделей, включающих диффузное распределение заряда и потенциала не только в жидкой фазе, но и в приповерхностном слое твердой фазы (внутренней обладке). Для ионных кристаллов это связано с изменением энергии образования дефектов (ионов внедрения и вакансий) вблизи поверхности для окислов и гидроокисей — с адсорбцией ионов в пористом [c.187]

    Дальнейшее развитие теории ДЭС идет в основном по линии построения еще более сложных моделей, включающих диффузное распределение заряда и потенциала не только в жидкой, но и в приповерхностном слое твердой фазы (внутренней обкладке). Для ионных кристаллов это связано с изменением энергии образования дефектов (иоНов внедрения и вакансий) вблизи поверхности, для оксидов и гидроксидов — с адсорбцией ионов в пористом слое ( гелеобразном слое), характерном, например, для стекол для высокополимерных ионитов — с адсорбцией ионов в матрице, постепенно уменьшающейся в глубь фазы ионита. Несмотря на видимое различие причин, для всех этих представлений характерна замечательная общность следствий, а именно некоторая часть скачка потенциала приходится на твердую фазу, и поверхностный потенциал г зона границе раздела (а тем более — потенциал ilJi) оказывается меньшим, чем межфазная разность потенциалов Д<р. [c.207]

    Г. В. Курдюмовым и советской школой металлофнзиков создана общепринятая в настоящее время теория мартен-Ситных превращений, как особого класса фазовых превращений. Общим с обычными фазовыми превращениями у мартснситных превращений является то, что они протекают путем образования и роста зародышей новой фазы внутри старой. Своеобразие же таких превращений, согласно Г. В. Курдюмову состоит в том, что оно ...состоит в закономерной перестройке решетки, при которой атомы не обме1шваются местами, а лишь смещаются один относительно другого на расстояния, ие превышающие межатомные . Г. В. Курдюмов показал, что мартенситные превращения не ограничиваются сплавами железо — углерод, а представляют собой широкий класс фазовых превращений. Так, мартенситные превращения характерны и для сплавов цветных металлов, например сплавов медь — алюминий, и являются одним из основных видов фазовых превращений в твердом состоянии. Так как при мартенситном превращении кристаллы новой фазы образуются путем согласованного кооперативного перемещения атомов старой фазы, то оно приводит сначала лишь к микроскопическим сдвигам кристалликов обеих фаз друг относительно друга. Ввиду малых расстояний, на которые перемещаются атомы при таком механизме превращения, его скорость не ограничивается скоростью диффузии. Следовательно, важная особенность кинетики мартенситных превращений состоит в том, что они являются бездиффузионными. Зародыши новой фазы при таких превращениях образуются с большой скоростью и могут возникнуть при столь низких температурах, при которых диффузия атомов практически не происходит. Например, образование мартенсита в углеродистых сталях наблюдается при температурах, немного более высоких, чем точка кипения жидкого азота (—195 °С). [c.517]

    Поскольку смесь остается устойчивой до температур 150°С, можно утверждать, что первый эндоэффект соответствует плавлению тройной эвтектической смеси, образованной из МБТ, ТМТД и части серы. Относительно вторых эндоэффектов на термограммах следует отметить, что их площади и температуры минимумов (97°С) с нагревом образцов не изменяются. Это позволяет предположить соответствие второго эндоэффекта плавлению вещества, количество и Тщ, которого остаются неизменными в условиях эксперимента. Наблюдение процессг плгшления смеси на приборе типа НМК с микроскопом показало, что этим веществом является избыток серы, не вступивший в тройную эвтектическую смесь. Понижение Тпл серы в смеси с 112 до 97°С объясняется согласно теории контактного плавления [249], в соответствии с которой кристаллы ускорителей в тройной системе с эвтектикой являются активной подкладкой для кристаллов избытка серы, облегчающей их плавление. Этс происходит благодаря уменьшению работы образовгшия зародышей жидкой фазы в поверхностном слое кристаллов серы, что в свою очередь приводит к снижению их температуры плавления. [c.142]

    В термодинамической теории фазовых превращений рассматривается лишь равновесие между исходной и новой фазами при допущении, что последняя фаза достигла полного развития и поверхность раздела между обеими фазами является плоской. При этом под температурой перехода понимают температуру, при которой обе фазы могут оставаться в равновесии друг с другом неограниченно долгое время. Образование и начальное развитие новой фазы с достаточной для ее обнаружения скоростью возможно только при некотором отступлении от условий равновесия. Отступления от условия равновесия могут быть гораздо более существенными, чем необходимо для роста новой образующейся фазы. Фазовый переход пар— жидкость (жидкость— кристалл) возможен только в том случае, когда исходная паровая фаза оказывается в состоянии, исключаемом из рассмотрения в обычной термодинамике как термодинамически неравновесное. Оно может сохраняться в течение более или менее продолжительного времени, поскольку скорость возникновения новой фазы достаточно мала. Подобные состояния называются ме-тастабильными. Возникновение новой фазы в метастабильной паровой фазе происходит в форме зародышей, которые рассматриваются как маленькие капельки. Предположение, что маленькие капельки или комплексы частиц отличаются от макроскопических тел в жидком состоянии только своими размерами, не может считаться правильным [97]. В случае зародышей малых размеров в чрезвычайной степени возрастает роль поверхностной энергии и поверхностного натяжения при оценке общей и свободной энергии образуемой ими системы. Кульер в 1875 г. и Айткен в 1880 г. [98] обнаружили, что для образования облака путем адиабатического расширения влажного воздуха необходимо наличие маленьких частиц ш.ши. Если же воздух пыли не содержит, то образование облака начинается только при очень сильном расширении. [c.825]

    Основные уравнения, описывающие образование зародыщей в конденсированной фазе, обычно расплаве, выводят так же, как и уравнения, описывающие зародышеобразование в паровой фазе. При этом наиболее существенному изменению в уравнении (УП1-8) подвергается частотный множитель. Вместо пара, молекулы которого свободно сталкиваются между собой, теперь имеется плотная жидкая фаза. Поэтому скорость роста кластеров в конденсированной фазе Тернбул и Фишер [8] связывают с процессом диффузии. Теория зародышеобразования в конденсированных фазах подробно излагается в оригинальной литературе, мы же ограничимся качественным выводом конечного уравнения этой теории. Рассмотрим зародыши кристалла, образующиеся в переохлажденном расплаве. Очевидно, что скорость, с которой к зародышу добавляются отдельные молекулы, определяется частотой прыжков молекул из положений, занимаемых ими в жидкости, на поверхность зародыша. Такие прыжки мало чем отличаются от прыжков молекул в процессе диффузии, и, как следует из теории абсолютных скоростей, их частота равна частотному множителю kTjh (h — постоянная Планка), умноженному на экспоненциальный множитель, включающий свободную энергию активации диффузии. Полное число прыжков в одном кубическом сантиметре жидкости за одну секунду равно [c.301]

    В химии основное внимание уделяется взаимодействиям между атомами, ионами и молекулами, приводящим к образованию (или разрыву) химических связей. Вместе с тем уже более ста лет изучаются слабые и очень слабые взаимодействия систем с замкнутой оболочкой, между которыми в обычных лабораторных условиях не осуществляются реакции в химическом смысле этого слова. Существование жидкого (а в случае молекулярных кристаллов) и твердого состояния обусловлено наличием сил притяжения между молекулами. Равновесное расстояние между молекулами, образующими ассоциаты в жидкой и твердой фазах, определяется компенсацией сил притяжения и отталкивания. Экспериментально установлено, что силы отталкивания очень быстро ослабевают с увеличением межмолекулярного расстояния (приблизительно обратно пропорционально его двенадцатой степени), тогда как возрастание сил притяжения при уменьшении межмолекулярного расстояния происходит не так быстро (грубо говоря, обратно пропорционально шестой степени расстояния). Это обстоятельство имеет важное значение в то время как силы отталкивания на расстояниях порядка длины химической связи оказываются почти неощутимыми, силы притяжения не могут считаться пренебрежимо малыми вплоть до расстояний 0,4 нм, и поэтому о них говорят как о дально-действующих силах. Среди таких сил важная роль принадлежит дисперсионным силам в разд. 17.2 рассматривается их квантовомеханическое обоснование в рамках простой модели. В данной главе будут выведены выражения, основанные на теории возмущений и пригодные для описания межмолекулярного взаимодействия. Но прежде чем перейти к их выводу, скажем несколько слов о происхождении кулоновских, индукционных и дисперсионных сил. Для кулоновского взаимодействия обе влияющие друг на друга системы могут формально рассматриваться как состоящие из ряда мультиполей. Во втором случае происходит взаимодействие между постоянным и индуцированным мультиполями двух систем. В третьем случае мы имеем дело с взаимодействием между системами, не имеющими постоянных диполей однако и в этих системах в результате флук- [c.482]

    Если точка Е совпадает с точкой F, должно использоваться обозначение А, В), так как эта точка не лежит па горизонтальном участке изобары температур кипения. Дальнейшее развитие теории перехода гетероазеотропов в гомоазеотропы позволит более детально изучить азеотронию как своеобразное явление, связанное с определенным характером взаимодействия молекул. Необходимо отметить, что до настоящего времени не обнаружено ни одного отрицательного гетероазеотропа. Если типичный гетероазеотроп охлаждать, в каждой из жидких фаз образуются кристаллы только одного из компонентов до тех пор, пока жидкая фаза не достигнет состава эвтектики, после чего начинает затвердевать второй компонент. Образованию [c.36]

    В большинстве процессов, механизм которых я изучал, всегда проявляется роль следов веществ, не участвующих в реакции, например роль следов кислорода или перекисей при термическом распаде паров органических веществ, роль ионных инициаторов при образовании полиацетальдегида. Известно, что одной из больших заслуг цепной теории является то, что она очень просто объяснила как инициирующую, так и ингибирующую роль малых количеств примесей (реакции с длинными цепями). Интересно, что аналогичные эффекты обнаруживаются в реакции совершенно другого типа, а именно в реакции горения угля, которой я совместно с большим числом сотрудников посвятил много работ, начиная с 1945 г. Следы минеральных загрязнений , содержащиеся в угле, значительно увеличивали скорость горения [54]. Есть ряд доводов в пользу того, что эти загрязнения действуют как переносчики кислорода попеременно, то окисляясь воздухом, то восстанавливаясь углем. Был обнаружен совсем удивительный факт оказалось, что достаточно иметь 5 мм рт. ст. паров воды в воздухе, чтобы уменьшить в 2 раза скорость горения угля высокой степени очистки (670°С) [55, 56]. Конечно, механизм ингибирования этой гетерогенной реакции должен быть совсем иным, чем механизм ингибирования реакций в газовой и жидкой фазах, объясненный ценной теорией. Инстинктивно, однако, старались найти в этой теории модель, которая могла бы объяснить описанные выше явления. При реакции в газовой фазе ингибитор хотя бы временно захватывает свободные радикалы — носители цепей и тем самым препятствует развитию всех звеньев цени, которые обычно рождают этот радикал. Вполне вероятно, что и при ингибировании горения угля парами воды последняя временно связывается с атомом или с группой атомов, благоприятно расноложенных в решетке кристалла для реакции. Вода закрывает этот атом от атаки кислорода и одновременно пре- [c.283]

    Один из основоположников геохимии. Основные научные работы посвящены физической химии природного минералогенезиса,. кристаллохимии и химии минералов, горных пород и земной коры. Сформулировал (1911) минералогическое правило фаз из п компонентов может совместно существовать не более п минералов. Вычислил (1914) кривую реакции образования волластонита из кальцита и кварца и применил физико-хи-мические представления к объяснению равновесных соотношений контактовых минералов. Вскрыл (1923—1927) важные соотношения между положением элементов в периодической системе и размерами их атомов и ионов. Установил законы образования различного типа кристаллических структур. Выдвинул (1923) основные положения теории геохимического распространения элементов. Разработал (1923—1924) геохимическую классификацию химических элементов. Особое внимание уделял изучению кристаллов оксидов редкоземельных элементов, а также зависимости твердости кристаллических веществ от их структуры. Исследовал (1929—1932) распространение редких элементов — германия (впервые обнаружил его в углях), скандия, галлия, бериллия и т. п. Будучи сторонником гипотезы об огненно-жидкой дифференциации Земли на геосферы, рассмотрел (1935—1937) ее в свете данных своих геохимических экспериментов о составе пород, метеоритов и оболочек Земли. Осуществлял научно-технические работы в области прикладной минералогии и химической технологии. Организовал производство алюминия из лаб-радоритовых пород Норвегии, калийных удобрений из биотитов. [c.146]

    Изучению механизма процессов схватывания и твердения полуводного гипса (мономинерального вяжущего) посвящено много работ [1—171. Однако ясного истолкования этому явлению еще не дано. В основе гидратацион-ного твердения, т. е. твердения при взаимодействии с водой, лежит, в конечном счете, превращение полуводного гипса в гидратное новообразование. Основоположник теории твердения гипса Ле Шателье считает, что при смешении Са504 бН О с водой он растворяется с образованием метастаби-льного насыщенного водного раствора. Так как растворимость полугидрата намного выше растворимости дигидрата, то раствор становится пересыщенным по отношению к двугидрату в жидкой фазе возникают условия для образования Зародышей кристаллов двуводного гипса и выделения их из раствора. Они растут, переплетаются, срастаются и обусловливают схватывание и твердение исходной смеси гипса с водой. [c.173]

    При попытке объяснить образование аддуктов мочевины, например, со стеариновой кислотой в водном растворе следует принять во внимание механизм, согласно которому как минимум 28,4 молекулы мочёвины и 2 молекулы стеариновой кислоты соединяются и образуют первый центр кристаллизации — линейно ориентированный роевой кристаллит , в дальнейшем он вырастает в видимую кристаллическую частицу. Энергетические соотношения для кри- -сталлической мочевины, обсуждавшиеся ранее, свидетельствуют о малой вероятности процесса, в котором метастабильный канал аддукта был бы образован заранее с последующим вхождением в него молекулы к-парафипа. Вместо этого мы вынуждены предположить, что молекулы мочевины комплексуются спирально вокруг цепи углеводорода. Теория Ленгмюра — Варда предполагает наличие небольшого сродства между молекулами воды и к-парафина и очень сильное взаимодействие между молекулами воды, подобное взаимодействию молекул жидкой воды в ее поверхностном Слое. На основе измерений поверхностного натяжения и этой модели исследователи пришли к выводу, что длинные парафиновые цепи остаются тесно свернутыми в воде и в водных растворах этого типа. Те же аргументы справедливы и для растворов мочевины в воде. А так как почти невозможно допустить, чтобы одновременно происходило соединение парафиновой цепи со столь многими молекулами мочевины, то следует искать другого объяснения, а йменно допустить наличие частично аддуктированных нестехиометрических частиц в растворе. [c.499]

    Если в жидкой фазе присутствзгют примеси в относительно больших количествах, то они влияют на кинетические характеристики процесса и смещают температуры равновесия жидкость — кристалл, а также меняют плотность активных точек роста на перемещающейся поверхности кристалла. Кроме того, примеси наследуются в какой-то мере твердой фазой и меняют ее свойства [154]. Получение желательного распределения примесей требует привлечения специальных способов кристаллизации, нахождение которых должно быть облегчено построением соответствующей теории. Аналогичное положение имеет место при осаждении из пара [155, 156]. Изменение распределения примесей путем варьирования временной зависимости скорости кристаллизации требует построения теории захвата инородных атомов и образований из жидкости [14]. Свойства кристалла данного химического состава во многом определяются его структурным состоянием (количеством и распределением дефектов строения кристаллической решетки различного типа [139]). Так, например, плотность и распределение дислокаций, образующихся в кристаллах при их формирований из расплава, существенно зависят от скорости перемещения фронта фазового превращения и от атомного механизма процесса. При этом возможно образование линейных дефектов как непосредственно при кристаллизации, так и при охлаждении от температуры плавления. Решение вопроса о выращивании кристаллов, имеющих высокое структурное совершенство, необходимое для нужд науки и техники, должно основываться на специальной теории. [c.250]

    Ион-дипольное взаимодействие подобно притяжению ионов, за исключением того, что оно более чувствительно к расстоянию (l/r вместо 1/г, см. разд. 3.2) и энергия его всегда меньше вследствие неполного разделения зарядов в ковалентном диполе. Такое взаимодействие проявляется, например, при образовании сольватов ионов (гидратов ионов — в водном растворе) в процессе растворения и диссоциации ионных кристаллов в полярном растворителе, например Na(H20)x и FiHjO) в водном растворе NaF. Подобные сольваты (гидраты) многих катионов металлов и некоторых анионов имеют вполне определенный состав в первой зоне сольватации (гидратации), например [Со(Н20)б] + в воде и [Со(ЫНз)б] + в жидком аммиаке. Для описания таких сольватов используется электростатическая теория кристаллического поля (см. разд. 10). [c.177]

    Условия проведения зонной плавки обусловливают характер распределения примесей в кристалле. В. Пфанном [И] развита теория распределения примесей в случав образования твердых растворов и неограниченной растворимости в жидкой фазе. Основные уравнения теории следующие  [c.224]

    П. я., к-рые могут быть названы физическими, связаны с избытком свободной энергии в поверхностном слое, с наличием поверхностного натяжения вследствие некомпенсированности молекулярных сил сцепления, действующих на молекулы поверхностного слоя. К этой группе П. я. относятся образование равновесных форм кристаллов при их росте, соответствующих минимуму свободной энергии при постоянстве объема шарообразная форма капель и пузырей, отвечающая условию минимума поверхности нри заданном объеме коалесценция — слияние капелек или пузырьков в эмульсиях, туманах и пенах коагуляция — агрегирование частиц дисперсной фазы и структурообразование в дисперсных системах, т. е. сцепление частиц в пространственные структуры — каркасы смачивание и прилипание, всегда связанные с уменьшением поверхностной энергии. Сложные формы жидких поверхностей раздела, возникающие нри совместном действии молекулярных сил (иоверх-ностпого натяжения и смачивания) и внешних сил (силы тяжести), рассматриваются теорией капиллярности (см. Капиллярные явления), связанной с общей теорией П. я. Из условия минимума свободной поверхностной энергии кристалла, различные грани к-рого (совместимые с данным типом кристаллич. решетки) имеют разные поверхностные натяжения, выводятся математически все возможные формы кристаллич. многогранников, изучаемые в кристаллографии. [c.51]

    Из общей теории фазовых превращений, созданной М. Фольмером, на основании термодинамичских работ И. Гиббса и получившей дальнейшее развитие в трудах Я. И. Френкеля, известно, что большинство процессов, протекающих в реальных системах, совершается по гетерогенной кинетике. Указанное положение применимо в полной мере к процессам пузырькового газовыделения (дегазация жидкого металла) и к процессам образования центров кристаллизации в затвердевающем расплаве. Другими словами, в обоих перечисленных выше случаях маловероятно гомогенное образование зародышей газовых пузырьков в пересыщенном газом расплаве и зародышей кристаллов в перео.хлажденном расплаве. Образование же зародышей критических размеров новой фазы происходит, как правило, не вследствие фазовых и гетерофазных флуктуаций, а связано с наличием в жидком металле подходящей поверхности в виде, например, твердой частицы, взвешенной в жидком метал- [c.442]

    Согласно молекулярно-кинетической теории, при росте кристалла различают два элементарных процесса флуктуационное образование двухмерных зародышей критических размеров на кристаллической грани и последующий их рост путем последовательного отложения частиц на гранях. Первый процесс связан с работой образования двухмерного зародыша, второй — определяется числом частиц, попадающих на поверхность грани, и связан с тепловой подвижностью молекул в жидкой фазе. Оба процесса в значительной степени зависят от температуры расплава, т. е. от степени переох-чаждения. [c.66]

    Одной из наиболее рзспространепных на сегодняшний день теорий, объясняюш,ей механизм слеживания, является кристаллизационная теория. В соответствии с ней на поверхности зерен удобрений образуется жидкая пленка их насыщенного раствора и мениски в зоне касания гранул. Изменения температуры и влажности окружающего воздуха могут вызвать пересыщение раствора, приводящее к выпадению кристаллов между зернами, которые служат основой фазовых контактов, приводящих к слеживаемости. Этот механизм наглядно объясняет хорошо известное из практики явление увеличения слеживаемости удобрений с повышением их влажности. Однако по мнению И. М. Кувшинникова [237, с. 139], имеется ряд экспериментальных данных, не подтверждающих наличие кристаллизационного механизма слеживаемости. Более вероятным он считает наличие диффузионного механизма. Слеживаемость при этом рассматривается как термодинамический процесс в дисперсной структуре, направленный на совершенствование последней, т. е. на образование в идеале монокристалла, обладающего минимумом энергии. [c.169]


Смотреть страницы где упоминается термин Жидкий кристалл теория образования: [c.244]    [c.439]    [c.3]    [c.165]    [c.97]    [c.169]   
Жидкокристаллический порядок в полимерах (1981) -- [ c.186 , c.189 ]

Жидкокристаллический порядок в полимерах (1981) -- [ c.186 , c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллы жидкие



© 2025 chem21.info Реклама на сайте