Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Непрерывные реакторы полного вытеснения

    Рабочие характеристики проточных биореакторов непрерывного действия лучше всего оценивать исходя из расчета материального баланса по биомассе, лимитирующему субстрату и продукту. Используя самую приближенную классификацию проточных биореакторов непрерывного действия с суспензионными культурами, можно выделить два типа реакторов реакторы с идеальным перемешиванием и проточные биореакторы в режиме полного вытеснения (реакторы поршневого типа).Биореакторы с идеальным перемешиванием могут работать как хемо-статы или как турбидостаты, В хемостате поддерживается постоянная плотность микробной культуры за счет потребления лимитирующего субстрата или какого-либо иного питательного вещества, а в систему турбидостата входит светочувствительное устройство, которое измеряет оптическую плотность культуры и обеспечивает ее постоянство. В промышленности, как правило  [c.420]


    Пользуясь принятой классификацией реакционных аппаратов [13], реакторы риформинга по принципу организации процесса относят к аппаратам непрерывного действия, по гидродинамическому режиму — к аппаратам полного вытеснения, по тепловому режиму — реакторы могут быть адиабатического или политропического типов. В технологических схемах отечественных установок каталитического риформинга пока находят применение только реакторы адиабатического типа (без теплообмена с окружающей средой). [c.43]

    Равенство (11.14) по форме аналогично равенству (П.9) для реактора непрерывного действия полного вытеснения. Здесь т — расчетное время, которое при полном перемешивании можно считать фактическим временем пребывания компонентов в реакторе. Изменение концентраций во времени и локально для [c.20]

Рис. 1-5. Изменение концентраций реагентов в реакторах основных типов а — реактор периодического действия б — реактор полупериодического действия в— реактор непрерывного действия с полным вытеснением г — реактор непрерывного действия с полным перемешиванием o — многоступенчатый реактор непрерывного действия с полным Рис. 1-5. <a href="/info/1486351">Изменение концентраций реагентов</a> в <a href="/info/311304">реакторах основных типов</a> а — <a href="/info/25689">реактор периодического действия</a> б — <a href="/info/336904">реактор полупериодического действия</a> в— <a href="/info/25631">реактор непрерывного действия</a> с <a href="/info/145935">полным вытеснением</a> г — <a href="/info/25631">реактор непрерывного действия</a> с <a href="/info/29962">полным перемешиванием</a> o — многоступенчатый <a href="/info/25631">реактор непрерывного действия</a> с полным
    С установлением специфических условий работы изотермических реакторов идеальных типов общее уравнение преобразуется в характеристические уравнения соответствующих реакторов периодического действия, непрерывного действия с полным вытеснением, непрерывного действия с полным перемешиванием п полупериодического действия. Характеристическое уравнение реактора должно выражать взаимозависимость его основных параметров. [c.32]

    Применительно к непрерывному процессу, протекающему в реакторе полного вытеснения, эти уравнения можно представить так  [c.32]

    Из сравнения кривых 1 я 2, соответствующих равенствам (11.6) и (П.12) ясно, что для достижения конверсии, равной 95% в реакторе непрерывного действия полного перемешивания, объем аппарата должен быть в 6,3 раза больший, чем объем реактора полного вытеснения или реактора периодического действия полного перемешивания. Для реакций более высокого порядка (кривые 3 ж 4) влияние типа реактора на степень конверсии еще более значительно. Для степени конверсии, равной 95%, объем непрерывно действующего реактора должен быть в 20 раз больше соответствующего реактора полного вытеснения. [c.31]


    Сравним теперь непрерывные реакторы идеального вытеснения и полного смешения, взяв для примера реакции нулевого, первого и второго порядка при е = 0 (табл. 19). [c.310]

    НЕПРЕРЫВНЫЕ РЕАКТОРЫ ПОЛНОГО ВЫТЕСНЕНИЯ [c.71]

    Для определения размеров каждой из ступеней, в которых осуществляется адиабатическое гидрирование при прямоточном движении газожидкостной смеси, возможно использование квазигомогенной модели адиабатического реактора полного вытеснения непрерывного действия. [c.136]

    Для анализа и расчетов с помощью математических моделей необходимо знать среднее время пребывания частиц реагирующих веществ в реакторе. Очевидно, что для периодических реакторов полного смешения и для непрерывных реакторов полного вытеснения это время равно фактическому времени проведения реакции. Иное положение имеет место в проточных реакторах полного смещения и во всех типах реальных реакторов, занимающих промежуточное положение. [c.128]

    Реакторы с полным вытеснением применяются также в процессах непрерывной полимеризации (производство капро-лактама). [c.134]

    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]

    Можно провести расчет трубчатого реактора на основе каскада реакторов смешения, если подробно исследованы оба пограничных случая реактора полною (идеального) вытеснения и непрерывно-действующего реактора смешения. Все частицы реагента, поступившие в трубчатый реактор полного вытеснения (рис. 11-4), имеют одинаковое время пребывания (движутся сплошным потоком), и, следовательно, не появляется никаких изменений скорости в радиальном направлении и не возникает диффузия в продольном направлении ( р -> 0). [c.207]

    Выражение (1,19) является характеристическим уравнением реактора непрерывного действия с полным вытеснением и представляет собой функцию [c.34]

    Для реакторов непрерывного действия полного вытеснения, в которых при условии установившегося процесса концентрация реагирующих веществ в каждом сечении реакционного объема постоянна, а по длине непрерывно изменяется, скорость химической реакции есть количество молей проходящего через реактор в единицу времени вещества, реагирующее в единице объема  [c.9]

    Реакторы непрерывного действия. Уравнения для реакторов непрерывного действия, приведенные в гл. I, справедливы и в том случае, если такие реакторы используют для проведения гомогенной реакции в жидкой фазе. Реакторы с полным вытеснением применяют реже, чем реакторы с перемешиванием, так как молекулярная диффузия в жидкой фазе протекает медленно и для гомогенизации реагентов необходимо перемешивание. [c.121]

    Рис. т. 52. Изменение концентрации компонента во времени и по длине в реакторах периодического действия (а), непрерывного действия полного смешения (б) и непрерывного действия полного вытеснения (в). [c.127]

    Анализ роста биомассы в любом проточном биореакторе, работающем в непрерывном режиме, включает определение характеристик потока в биореакторе и кинетики происходящих в нем биологических процессов. Характеристики потока во всех реакторах непрерывного действия могут быть описаны по типу распределения времени пребывания субстрата в реакторе. Двумя крайними случаями распределения времени пребывания являются реактор идеального вытеснения и реактор полного смешения. При работе в однофазной системе можно представить существование как этих крайних случаев, так и множества промежуточных ситуаций. Однако дать ответ на вопрос о типе перемешивания в биореакторах, в которых происходят микробные процессы, гораздо сложнее. Пока есть возможность работать с дискретно диспергированными в жидкости клетками, в условиях идеального крупномасштабного перемешивания, существенные градиенты будут иметь место только в малых локальных зонах. Поэтому в случае бактериальных суспензий в биореакторах [c.105]

    Для математического описания и общности расчета реакторов удобно классифицировать их следующим образом 1) периодического действия полного смешения 2) непрерывного действия полного смешения 3) непрерывного действия полного вытеснения. [c.8]


    Переход между реакторами полного смешения и полного вытеснения непрерывный. [c.209]

    Реакторы периодического и непрерывного действия. Реакторы периодического действия работают при нестационарном технологическом режиме. При этом независимо от степени перемешивания реагирующих масс изменяются во времени не только концентрации реагентов, но и температура, давление, а соответственно и константа скорости процесса. Если периодический реактор работает в режиме полного смешения, то время, необходимое для достижения заданной степени превращения, рассчитывается по характеристическому уравнению (П1.57), которое совпадает с ха-, рактеристическим уравнением реактора идеального вытеснения (П1.18). Следовательно, если были бы возможны одинаковые условия проведения процесса в реакторах периодического действия и идеального вытеснения, то их объемы были бы равны между собой. Однако условия протекания процессов в промышленных проточных реакторах, как правило, лучше, чем в периодических. [c.96]

    Исследования динамики непрерывного процесса получения окисленных битумов в змеевиковом реакторе показали, что реактор работает по принципу полного вытеснения. Транспортное запаздывание в змеевике соответствует времени пребывания битума в реакторе. В результате математического описания динамики процесса было показано, что с увеличением коэффициента рециркуляции продолжительность переходного процесса и коэффициент усиления системы возрастают. Регулирование по выходному параметру вследствие значительного транспортного запаздывания требует компенсации возмущений. [c.325]

    В теории моделирования принято классифицировать химические реакторы на периодические и непрерывные (по характеру изменения концентраций реагентов во времени). Каждый из этих типов можно свести в свою очередь к двум идеализированным с точки зрения гидродинамики моделям реактор полного смешения и реактор, в котором смешение реагентов отсутствует. При анализе непрерывных реакторов рассматривают также различные комбинации реакторов смешения и вытеснения, а кроме этого, каскады (цепочки) проточных реакторов различного типа. Ниже дается краткая характеристика основных моделей. [c.341]

    Еслп проводится непрерывная полимеризация в массе и летучий продукт не выделяется, то применяют реакторы с полным вытеснением, которые при минимальном их объеме обеспечивают высокую степень превращения. Два типичных примера использования таких реакторов для проведения реакций в жидкой среде с большой вязкостью приведены ниже. [c.133]

    Каталитические реакторы с неподвижным слоем катализатора имеют особенности реакционных аппаратов с полным вытеснением, поэтому для их расчета можно использовать ранее установленные зависимости (см. гл. I). Для реактора непрерывного действия зависимость между объемной скоростью и степенью превращения можно получить из уравнения  [c.232]

    Зависимость селективности от степени превращения позволяет выбрать оптимальную модель реактора для максимального выхода целевого продукта В (рис. 33). Выход продукта в реакторе идеального вытеснения или же реакторе смешения периодического действия определяется площадью под кривой зависимости 5в от х в непрерывно работающем реакторе полного смешения — площадью прямоугольника, равной 5в- а. Если селективность с увеличением степени превращения уменьшается (рис. 33,а,б), выход также будет уменьшаться. В этом случае площадь под кривой будет бoльuJe площади прямоугольника и, следовательно, предпочтителен реактор идельного вытеснения или реактор периодического действия. Каскад реакторов полного смешения (рис. 33,6) даст более высокий выход, чем единичный реактор полного смешения. Если с увеличением степени превращения селективность возрастает (рис. 33, е), то по заштрихованным площадям видио, что выход в реакторе полного смешения будет значительно выше, чем в реакторе идеального вытеснения или реакторе периодического действия. При этом использование каскада реакторов не рекоменду- [c.101]

    Переход от периодического к непрерывному режиму окисления парафина в производстве синтетических жирных кисло/(СЖК) связан, прежде всего, с выяснением вопроса, о выборе типа реактора для непрерывного процесса. Известно, что применение реактора идеального вытеснения сохраняет все характеристики периодического процесса, однако, создание такого реактора для системы — газ—жидкость (воздух—парафин) принципиально невозможно из-за необходимости смешения фаз для транспорта кислорода в зону реакции. Реактор полного смешения, как интегральный реактор, обладает рядом особенностей, в результате этого окисление парафина в нем может протекать не так, как это было в периодическом режиме. , [c.103]

    Большое значение как при периодической, так и непрерывной организации процесса, имеет характер движения потоков — прямоток, противоток или перекрестный ток. Структура потоков в аппарате (полное вытеснение, полное перемешивание или их комбинация) определяет выбор математической модели процесса, включающей уравнения, описывающие статику и динамику, а также граничные и начальные условия и другие характеристики процесса. Составление математической модели в каждом частном случае ведется в соответствии с системным подходом к процессу процесс разбивают на элементарные стадии, расположенные в иерархическом порядке. На первом уровне математической модели обычно располагают зависимости, описывающие условия равновесия, а также характер химических превращений (если они имеют место). На втором иерархическом уровне описываются закономерности элементарных процессов переноса, идущих в единичном зерне, в одной капле, пузыре и т. п. Третий уровень соответствует моделированию процесса в целом слое, на тарелке и т. д., включая в себя зависимости второго уровня. На четвертом уровне принимается во внимание расположение отдельных слоев, тарелок, теплообменных устройств в целом аппарате (с учетом фактора масштабирования). Пятый уровень включает описание гидродинамики и массообмена в каскаде реакторов или агрегате. [c.74]

    В последнее время выполнен ряд теоретических и экспериментальных исследований по разработке методов моделирования, в частности, реакторов непрерывного действия, основанных на представлениях о стохастической природе процесса перемешивания. Обычно применяют либо комбинированные модели, которые составляют из ячеек полного перемешивания, полного вытеснения и застойных зон, связанных между собой различными потоками, [c.269]

    В ряде случаев интенсифицировать процесс можно путем повышения температуры и проведением его непрерывным способом в потоке. Поэтому наряду с каскадом реакторов с перемешиванием (производство смолы Ф-17 и МФ-17) применяются и трубчатые реакторы, работающие в режиме полного вытеснения (производство мелалита, клеевых смол и аминопластов). [c.153]

    Для непрерывных процессов, протекаюш,их в реакторах, суш,е-ственное значение имеет секционирование. При секционировании зоны реакции уменьшается нежелательное влияние внутриреакторного смешения исходного сырья с продуктами реакции и тем самым увеличивается скорость процесса. Реагирующий поток проходит все ступени поочередно, причем режим внутри каждой секции может быть любой от полного вытеснения до полного смешения. [c.160]

    Чтобы показать возможность непрерывного перехода к реактору полного вытеснения, на рис. 11-12 представлены кривые функции распределения F(t) = = (АВ/АВо)у для разного числа т реакторов смешения. На практике встречаются аппараты, условия работы в которых очень сложные (например, вращающаяся печь, крекинговая установка и т. д.), поэтому их трудно сопоставить с тем или иным идеальным типом реактора. В этих случаях можно применить методы Гофманна [81 и Ше-неманна [9], основанные на графическом расчете. [c.212]

    В промышленных реакторах в реакции участвуют две фазы и более. В реакторах, работающих на твердых катализаторах, кроме скорости протекания собственно реакции превращения должна быть обеспечена также скорость переноса реагирующих веществ между фазами. Все известные конструкции реакционных аппаратов по общности принципов работы подразделяются на реакторы полного смешения (периодического или непрерывного действия) и реакторы полного вытеснения. По способу теплообмена в реакционной зоне различают реакторы с тепло- бй-еном через стенку (перегородку) и непосредственно с катализатором (адиабатические реакторы). [c.253]

    Известно [131], что средняя скорость реакции в аппаратах непрерывного действия, в которых происходит смешение исходных веществ с продуктами реакции, меньше соответствующей скорости в реакторах полного вытеснения. Эта разница в скорости увеличивается с увеличением степени превращения и порядка реакции. Поэтому секционирова- [c.185]

    Современное крупное промышленное производство не удовлетворяют периодические процессы, и даже если длительность реакции составляет многие часы, оно должно быть непрерывным. Если реакцию невозможно осуществить в проточной системе, применив реактор полного вытеснения (например, трубу соответствующей -длины), то для ифирмления непрерывногоГ продесса применяют каскады емкостных реакторов (как правило, с мешалками), являющихся реакторами полного смешения. [c.120]

    Режим движения реакционной среды. На рис. 1-4 представлены два типа реакторов непрерывного действия. В первом реакторе элемент объема движется, не смешиваясь с предыдущим или последующим элементами объема. Состав элемента объема будет изменяться последовательно по длине реактора вследствие химической реакции. Реактор не имеет ни одного механического конструктивного прпснособления для перемешивания и характеризуется большими значениями соотношений между длиной и диаметром. При движении через реактор элемент объема, вероятно, ведет себя так же, как поршень в цилиндре, вытесняя все, что находится перед ним, поэтому такой реакционный аппарат называют реактором с полным вытеснением (реактором идеального вытеснения). [c.28]

    В условиях непрерывного процесса реакционная масса представляет собой газопарожидкостную эмульсию плотностью 200— 300 кг/м . Реактор работает в режиме полного вытеснения, благодаря чему достигается мольное соотношение хлорбензола к ди-хлорбензолу в прохлорированной массе близкое к 40. Лучшего со-отношения не удавалось достичь даже при периодическом ведении процесса. [c.90]

    Непрерывное производство некоторых продуктов последнего типа осуществляют в реакционной колонне с выносным охлаждением и циркуляцией жидкости при помощи насоса (рис. 80,б). Исходные вещества непрерывно вводят в аппарат и по мере этого выводят продукты реакции. Такой тип реактора полного смешения подходит для-получения этиленциангидрина или алкиленкарбонатов, где последовательные реакции оксизтилирования не имеют значения. Однако при синтезе этаноламинов в таком аппарате ухудшается состав продуктов, а при получении неионогенных поверхностно-активных веществ кривая распределения по степени оксизтилирования становится более пологой по сравнению с изображенной на рис. 79 (стр. 405). Эти нежелательные эффекты можно снизить, если применять реакторы вытеснения, секционированные аппараты или каскад реакторов. [c.408]


Смотреть страницы где упоминается термин Непрерывные реакторы полного вытеснения: [c.211]    [c.15]    [c.10]    [c.64]    [c.332]    [c.176]    [c.228]   
Смотреть главы в:

Лабораторный практикум по химии и технологии основного органического и нефтехимического синтеза Изд.2 -> Непрерывные реакторы полного вытеснения




ПОИСК





Смотрите так же термины и статьи:

Биореакторы проточные непрерывного действия с полным вытеснением реакторы поршневого

Вытеснение

Реактор вытеснения

Реактор непрерывного действия с полным вытеснением



© 2025 chem21.info Реклама на сайте