Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические процессы нестационарные

Рис. 6.18. Принципиальная технологическая схема нестационарного процесса в слое (/4 ) с периодически изменяющимся направлением фильтрации реакционной смеси и в дополнительном слое катализатора (АгУ. Рис. 6.18. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/50834">нестационарного процесса</a> в слое (/4 ) с периодически изменяющимся направлением фильтрации <a href="/info/954536">реакционной смеси</a> и в дополнительном слое катализатора (АгУ.

    Для значительной части технологических процессов в стационарном зернистом слое, протекающих с движением через этот слой газа или жидкости, характерно непостоянство температур в объеме слоя кдк в пространстве, так и во времени. Поток, проходящий через слой, охлаждается или нагревается через стенки аппарата при этом в объеме слоя может идти выделение либо поглощение теплоты — стационарные во времени при проведении реакций, в которых зернистый слой имеет функции катализатора или инертной насадки, и нестационарные — в процессах адсорбции, десорбции, сушки и других с участием твердой фазы. [c.111]

    Тенденция к разработке и внедрению аппаратов с нестационарным движением потоков, применяемых для интенсификации технологических процессов в гетерогенных системах, требует глубокого теоретического осмысления механизма взаимодействия конструктивных узлов аппарата и структурных элементов, составляющих компоненты дисперсии. Внезапное и/или знакопеременное изменение проходного сечения аппарата, встреча с плохо обтекаемым препятствием, возбуждение специфических вторичных явлений, разнообразные сочетания этих феноменов -вот некоторый перечень возможной организации движения потоков в подобных аппаратах. [c.101]

    Материал книги охватывает важнейшие проблемы современной инженерной химии приложение законов физической химии к решению инженерные задач, явления переноса массы, энергии и количества движения, вопросы теории подобия, теорию химических реакторов, проблемы нестационарные процессов. Специальные главы посвящены методам математической статистики и вопросам оптимизации химико-технологических процессов. [c.5]

    В. В. Клименко. Алгоритм адаптивного предсказывающего фильтра для нестационарных процессов. — В сб. Применение математических методов для оптимизации технологических процессов производства строительных материалов . Братск, Стройиздат , 1973, с. 80. [c.133]

    Математические модели основных технологических процессов имеют вид конечных, дифференциальных, интегральных или интегрально-дифференциальных уравнений их построение требует значительных затрат труда и в исследуемых системах далеко не всегда оказывается возможным, что обусловлено отсутствием необходимой информации о процессе, сложностью и существенной нестационарностью. При затруднении или невозможности построения адекватной математической модели технологического процесса в виде упомянутых классов уравнений используют либо статистические модели (уравнения регрессии того или иного вида), либо так называемые информационно-логические модели. Деятельность обслуживающего персонала по эксплуатации ГАПС является предметом эвристического моделирования. [c.44]


    Гибкие производственные системы в химической промышленности создаются, в основном, на базе периодического способа организации технологических процессов. Как известно, аппараты периодического действия функционируют в циклических режимах, а в пределах отдельных операций являются существенно нестационарными объектами, что значительно осложняет их автоматизацию. Поэтому в области автоматизации периодических процессов наблюдается значительное отставание. [c.272]

    Наиболее полно специфика малотоннажных многоассортиментных производств (нестационарность технологических параметров и цикличность работы аппаратов) проявляется при периодическом способе организации технологических процессов. Отдельные стадии производства изолированы друг от друга в пространстве и вре- [c.524]

    Индивидуальная ХТС предназначена для выпуска одного целевого продукта, или, точнее, для осуществления одного технологического процесса. По структуре такая ХТС представляет собой последовательность аппаратов периодического (возможно, и полунепрерывного) действия, соединенных трубопроводами для передачи полупродуктов. Возможны ситуации, когда отдельные полупродукты являются также выходными для данного технологического процесса. Специфика проектирования индивидуальных ХТС заключается лишь в использовании нестационарных моделей, тогда как цели являются общими с непрерывными процессами (производствами). [c.525]

    Широкое распространение получил также способ интенсификации технологического процесса, не требующий изменений в конструкции аппарата, путем создания нестационарности температурных полей (для реакторов) либо парожидкостных потоков (для массообменных аппаратов). [c.103]

    С развитием математического моделирования процессов и реакторов и исследованием с помощью математических методов динамических процессов нестационарной кинетики математика сделалась органическим вплетением в логические основания и химии, и химической технологии. И если в настоящее время учение о химических процессах называют и химической физикой (школа И, Н. Семенова), и физической кинетикой, то цементирующим элементом в системе, которая включала в себя химические и физические представления о химико-технологическом процессе, является скорее всего именно математика. И что особенно интересно и важно — это то, что в этой системе происходит развитие одновременно и параллельно и химических, и физических, и технических, и математических знаний. Дело в том, что решение кинетических задач оказалось невозможным в рамках классической теории дифференциальных уравнений. Сложный нелинейный характер протекания химических процессов выдвинул ряд новых задач, решение которых обогатило собственно и математику. В последние несколько лет создалась новая дисциплина, пограничная между математикой и химией, а фактически между математикой и теорией химической технологии, которая призвана решать задачи химии в основном в связи с созданием промышленного химического процесса, — математическая химия, призванная служить надежным теоретическим основанием учения о химических процессах. [c.163]

Рис. 6.19. Принципиальная технологическая схема нестационарного процесса с попеременным изменением ввода реакционной смеси в одну из двух одинаковых частей слоя катализатора Рис. 6.19. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/50834">нестационарного процесса</a> с попеременным <a href="/info/1075234">изменением ввода</a> <a href="/info/954536">реакционной смеси</a> в одну из <a href="/info/1696521">двух</a> одинаковых <a href="/info/8712">частей слоя</a> катализатора
Рис. 6.21. Принципиальная технологическая схема нестационарного процесса в аппарате с разделением слоя катализатора на три части Рис. 6.21. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/50834">нестационарного процесса</a> в аппарате с <a href="/info/214133">разделением слоя</a> катализатора на три части
    Обсуждаются общие принципы построения математической модели, описывающей нестационарные процессы в реакторе с неподвижным слоем катализатора. Рассматриваются различные способы организации технологических процессов в таких реакторах и возникающие при этом задачи. [c.167]

    Длительность цикла и условное время контакта т — важнейшие технологические характеристики нестационарного процесса. Выбор значений этих двух параметров определяе Ля, главным образом, требуемым запасом устойчивости, который можно выразить разностью > О или Тк — Тк > О (индексом обозначаются [c.114]

    Рас. 6.1. Принципиальная технологическая схема нестационарного процесса с периодическим изменением направления ввода и вывода реакционной смеси. [c.147]


    Об успешном применении цепей Маркова для моделирования нестационарного поведения химико-технологических процессов сообщается в работах [183]. [c.297]

    Материальный баланс рассчитывается на основе закона постоянства массы и имеет целью определение выхода продуктов технологического процесса и сжигания топлива. Материальный баланс составляется на единицу исходных материалов (шихта, топливо), на единицу времени или на период работы печи (нестационарный режим работы). [c.255]

    Холодильные установки любой отрасли промышленности в зависимости от характера технологического процесса могут быть двух видов 1) технологический процесс предусматривает непрерывное понижение температуры охлаждаемого объекта от начальной температуры до необходимой конечной (охлаждение и замораживание продуктов, охлаждение воздуха в помещениях и жидкостей в аппаратах) работа таких холодильных установок осуществляется в условиях нестационарного теплового состояния 2) технологический процесс требует поддержания постоянных параметров охлаждаемой среды, для того чтобы при этих условиях осуществлялись химические реакции или хранились вещества, требующие постоянства параметров в аппаратах и в охлаждаемых помещениях для сохранения их качества такие установки работают в условиях стационарного теплового состояния. [c.7]

    Тепловой баланс, составляемый на малые промежутки времени (5—10 мин), иногда называют мгновенным. Назначение мгновенного баланса — выяснение динамики расхода энергии на технологический процесс, если процесс происходит в нестационарных тепловых условиях. [c.256]

    В предыдущих главах были рассмотрены методы описания динамических свойств химико-технологических процессов, основанные на уравнениях математических моделей, все коэффициенты которых считались известными. Однако часто оказывается, что математическая модель объекта содержит коэффициенты, которые нельзя рассчитать теоретически. При этом возникает задача нахождения неизвестных коэффициентов математических моделей на основе данных экспериментального исследования нестационарных режимов объектов. Цель главы — описание некоторых методов экспериментального определения коэффициентов математических моделей. [c.261]

    Газотранспортным сетям присуще больше число возмущающих воздействий, которые определяются распределенностью параметров в пространстве, нестационарностью технологических процессов, непрерывным изменением технологических характеристик газоперекачивающих агрегатов, изменением с течением времени коэффициентов гидравлического сопротивления и теплопередачи, а также другими факторами. [c.197]

    Испытание основано на составлении материальных балансов газоочистки. Краткие сведения о технологическом процессе приводятся в [61]. Процесс нестационарный, разрежение в колонне составляет 1...2 кПа. [c.450]

    Значительная доля химико-технологических процессов проводится в непрерывных режимах, когда характеристики процесса (в том числе и тепловые) остаются неизменными во времени. В периодических процессах тепловые характеристики во времени могут изменяться. В этом аспекте непрерывные процессы обычно отождествляют со стационарными, периодические — с нестационарными такое отождествление в практических целях часто вполне оправданно . В то же время с физической точки зрения непрерывный процесс может складываться из нестационарных элементарных актов переноса теплоты, и тогда, строго говоря, отождествление неправомерно (пример — прогрев твердых частиц, непрерывно движущихся вдоль теплообменной поверхности теплообменник может работать в стационарном ре- [c.474]

    Последнее обстоятельство приводит к существенному отличию слоя, в котором происходит движение материалов от слоя с неподвижным материалом. Непостоянство ноля эмвивалент-ных отверстий обусловливает нестационарность движения газов в слое. В тех случаях, когда движение материалов сопровождается изменением формы и размера кусков в результате протекания того или иного технологического процесса, нестационарный характер движения газов через слой может способствовать выравниванию движения газов в слое. Особенное влияние на сопротивление слоя движение материалов оказывает в тех случаях, когда слой состоит из различных по размерам кусков и когда может происходить слеживание материала в слое. [c.435]

    Динамические модели содержат описание связей между основными перементлии, измен.ялощимися во времени при переходе от одного статического режима к другому. Они предназначены для получения динамических характеристик объектов управления и исследования переходных (нестационарных) режимов химико-технологических процессов. [c.8]

    Среди промышленных объектов идентификации большой сне цификой и своеобразием отличаются химико-технологические процессы. Так, для объектов химической технологии характерны большие степени нелинейности, распределенность параметров, нестационарность входных шумов и помех измерения, непрерывный дрейф основных показателей процессов и т. п. Все это накладывает существенные ограничения на применение стандартных методов идентификации и требует разработки специальных методов, которые в максимальной степени учитывали бы эту специфику. В связи с этим из второй группы методов представляется целесообразным выделить и рассмотреть отдельно статистический метод идентификации объектов с конечной памятью на основе понятия аналитических случайных процессов и задачи о минимизации квадратичного функционала. [c.287]

    Среди объектов идентификации большой спецификой и своеобразием отличаются химико-технологические процессы. Для объектов химической технологии характерны большие степени нелинейности, существенная распределенность параметров в пространстве и времени, нестационарность и взаимная коррелиро-ванность входных шумов и помех измерения, непрерывный дрейф технологических показателей процессов, деформация физикохимической структуры протекающих в объектах процессов и т. д. Перечисленные факторы лежат в основе тех значительных трудностей, которые возникают при решении задач оценки переменных состояния и идентификации объектов химической технологии на основе стандартных методик, рекомендуемых современной теорией динамических систем и рассмотренных выше. [c.474]

    В нашем сознании традиционно укоренилась мысль о том, что залогом высокой эффективности технологического процесса, и в частности химического, является неизменность во времени всех режимных характеристик. Это, конечно, не относится к процессам, которым присуща генетическая нестационарность, связанная, например, с быстрой дезактивацией катализатора, с периодичностью процессов сушки, кристаллизации, прессования, термической обработки изделий и др. В производстве неизменность характеристик старательно поддерживается стабилизацией входных параметров, с полющью которых на основе многолетнего опыта и интуитивных соображений или на основе исследования процессов с использованием математических моделей отыскиваются оптимальные стационарные условия и в случае необходимости корректируется технологический режим. [c.3]

    В рассмотренных в работах [1—9] процессах температура слоя медленно меняется со временем при внесении внешних возмущений (например, при изменении скорости потока и 1)). Б то же время концентрационные поля газового реагента изменяются по сравнению с температурой практически безынерционно, т. е. концентрация реагента находится в квазистационарном режиме по отношению к температуре. Возникает естественное разделение переменных на быструю — концентрацию и медленную — температуру. В гл. 3 рассматривался вопрос разделения времен в подобных химико-технологических процессах. Там же приведены различные оценки, позволяющие с достаточным основанием считать одни процессы быстрыми, а другие медленными. Для изучаемого в настоящей работе нестационарного процесса предположение о квазистационарпости концентрационных полей по отношению к тепловым подразумевает, что в системе уравнений явно зависит от времени только медленная переменная, ответственная за изменение тепловых полей. Локальные флуктуации концентрационных полей предполагаю йся не наблюдаемыми концентрации не зависят от времени явно. Концентрационные поля следуют за тепловыми безынерционно. Распределение концентраций по длине реактора зависит только от мгновенного значения скорости потока газа (управляющего параметра) и мгновенного распределения температуры по длине реактора. [c.101]

    Приведем подробно пример реализации в промышленности нестационарного способа обезвре/кпвання газовых выбросов цеха пластификаторов от малых содержанта спнртов с 6—8 атомами углерода. Эти прнмеси содержатся в отходящих газах, общий объем которых 600 мУч. Рассматриваемый здесь пример отличается тем, )то технологический процесс периодический и, кроме того, в выбросную трубу поступают газы от различных стадий этого процесса. Концентрация токсичных выбросов в газах изменяется на порядок от 1 до 15 г/м Кроме того, возможно изменение нагрузки в 2 раза. Бывают такие достаточно продолжительные интервалы времени, когда концентрацпя токсичных выбросов равна нулю. Средняя температура газовых выбросов перед реактором 35°С. Адиабатический разогрев смеси при полной степени превращения [c.176]

    В технологических процессах добычи и переработки различного сырья образуются газовоздушные смеси, содержащие в небольших количествах оксид углерода, метан и другие горючие вещества. Значительное количество этих газов выбрасывается в атмосферу. Использование их в качестве низкокалорийных топлив затруднено или невозможно, так как они не горят в факеле, а каталитическое сжигание с применением теплообменников не экономично. Часть таких слабоконцентрировапных газов, содержащих различные органические вещества, все же обезвреживается, но тепло окисления при этом ие утилизируется. В этой главе рассматривается нестационарный метод получения высоконотенциального тепла из таких слабоконцентрированных газов. [c.200]

    Основные результаты расчета при различных технологических параметрах представлены в табл. 10.1. В расчетах варьировались теплопроводность зерна катализатора, линейные размеры гранул катализатора, состав смеси на входе в аппарат, скорость фильтрации и время контакта. В таблице представлены средние за цикл концентрации аммиака на выходе из слоя и максимальная температура катализатора. Из данных, приведенных в таблице, можно сделать вывод о влиянии размеров зерна катализатора на технологические характеристики нестационарных режимов. С ростом размеров зерна катализатора уменьшается максимальная температура, что вызвано снижением коэффициента межфазного теплообмена и ростом характерного времени теплопереноса в пористом зерне. Сов-иместное действие этих двух факторов увеличивает ширину зоны реакции, и, как следствие, максимальная температура понижается. Выход аммиака увеличивается. Это еще раз подтверждает уже обсуждавшийся ранее вывод о том, что при осуществлении процесса в нестационарном режиме часто при увеличении размера зерна внутренний массоперенос оказывает меньшее влияние на выход продукта, чем межфазный теплообмен и теплоперенос внутри зерна катализатора. Например, по данным расчетов при увеличении диаметра зерен катализатора с 5 до 14 мм максимальная температура в слое уменьшается с 587 до 552°С. При этом средняй- за цикл выход аммиака увеличивается с 15,5 до 17,2%. Дальнейшего снижения максимальной температуры можно добиться за еявт использо- [c.213]

    Аппарат может разрушиться и прн постоянном режиме нагружения в результате чрезмерного развития деформаций материала, из которого он выполнен. Это имеет место для металлов ири высоких температурах, а для пластических масс ири нормальной температуре, Апиарат[.1, нагруженные внутренним давлением, чаще подвергаются действию переменной нагрузки низкой частоты. Нестационарный характер нагрузки обусловлен периодическими пусками и остановками аппаратов на очистку и ремонт, периодичностью технологического процесса и т, д. [c.214]

    Многие объекты эксплуатируются при повышенных температурах. С одной стороны, этот фактор способствует уменьшению вероятности возникновения хрупкого разрушения, поскольку обычно объекты эксплуатируются при рабочих температурах, значительно превьш1ающих порог хладноломкости. С другой стороны, интенсивное тепловое воздействие может привести к развитию различных деградашюнных процессов в материалах, из которых изготовлена конструкция и, как следствие, к их термическому повреждению. Влияние температурного фактора определяется не только значением рабочей температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала конструкции. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пусконаладочных и ремонтных работ, а так же вследствие неоднородного распределения температур по поверхности конструкции. Тепловые поля в той или иной степени нестащюнарны, их изменение приводит к соответствующему перераспределению упругих и пластических деформаций в объеме напряженного металла [17, 30]. [c.9]

    Влияние температурного фактора определяется не только значением эксплуатационной температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала колонны. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пуско-нападочных и ремонтных работ, а также [c.25]

    Основные особенности технологического процесса транспортировки газа заключаются в следующем. Сети снабжения потребителей газа имеют большую протяженность. Объекты магистральных газопроводов, которыми являются компрессорные станции, линейные участки, газораспределительные станции, обладают значительной рассредоточенностью. Режим работы газотранспортных предприятий находится в зависимости от режима работы газодобывающих производств. Маневрирование потоками газа и отбор газа с месторождений ограничены регламентным планом разработки, пропускной способностью газопроводов и малой скоростью передачи газа по сравнению со скоростью изменения газопотреб-ления. Отсюда следует, что режим движения газа носит ярко выраженный нестационарный характер. [c.195]

    Под автоматическим регулированием тепловой работы печей понимается управление теплотехническими процессами, происходящими в рабочем пространстве и вспомогательных устройствах (регенераторы, рекуператоры). Однако в отличие от других тепловых агрегатов особенностью печей является взаимосвязь между теплотехническими и технологическими процессами, что существенно усложняет автоматическое регулирование тепловой работы печей по сравнению с другими чисто теплотехническими агрегатами. Технологические процессы нередко очень сложны и иногда протекают в нестационарных условиях и оказывают в некоторых случаях весьма существенное влияние на работу печей. Поэтому в теплотехнических основах автоматизации должна быть учтена и роль технологических факторов, т. е. эти основы должны иметь комплексный характер. Исходным моментом для соверщенной автоматизации является наличие уравнений для регулируемых параметров (алгоритмов), характеризующих тепловую работу печей. Составление указанных алгоритмов задача частных теорий печей конкретного технологического назначения, так как уравнения, которые кладутся в основу автоматичеокого регулирования, должны отражать специфику работы данного типа печей. Составление таких уравнений во многих случаях — задача очень сложная, поэтому на известном этапе практика пощла по пути автоматического регулирования отдельных параметров, определяющих работу печей. При этом автоматизируется управление одним или несколькими параметрами независимо друг от друга, причем задание для регулирования устанавливается эмпирическим путем на основании данных практики. В качестве примера можно указать на регулирование давления в печах, соотнощения количеств воздуха и топлива, температуры охлаждающей воды и т. д. Такой способ регулирования является возможным и целесообразным потому, что в ряде случаев можно установить такое давление в печи, которое является по совокупности наиболее целесообразным. Мож но также задаться [c.535]

    Основным средством для создания оптимального режима при эксплуатации очистных сооружений отдельного региона может быть система автоматизированного управления технологическим процессом очистки сточных вод на базе датчиков контроля и ЭВМ, решающих задачи управления. Эта система позволяет не только достигнуть минимальных затрат на обработку сточной воды при заданной эффективности очистки, но и оперативно воздействовать на управляемый объект с целью повышения надежности его работы при сбросе на очистные сооружения сточных вод с резко изменяющейся, нестационарной характеристикой. Такая система разработана ГИСИ им. В. П. Чкалова для управления процессом биологической очистки сточных вод на очистных соружениях Дзержинского промышленного района. [c.332]


Смотреть страницы где упоминается термин Технологические процессы нестационарные: [c.177]    [c.9]    [c.26]    [c.296]    [c.27]    [c.267]    [c.224]    [c.283]    [c.536]    [c.443]   
Введение в моделирование химико технологических процессов Издание 2 (1982) -- [ c.43 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс нестационарный

Ток нестационарный



© 2024 chem21.info Реклама на сайте