Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны очистка

    В промышленности получили распространение процессы, основанные на фильтровании растворов через полупроницаемые перегородки (мембраны). Ультрафильтрование при давлении 0,1— 0,5 МПа обеспечивает отделение частиц размером до 0,5 мкм, а использование обратного осмоса при давлении 3—10 МПа позволяет производить очистку растворителя от частиц, равных диаметру молекул или гидратированных ионов. Качество разделения зависит от природы и концентрации соединений в сточных водах, от температуры, давления и конструкции аппарата, В результате очистки воды получается 5—20 % раствор солей и вода, которая по своим свойствам чаще всего удовлетворяет санитарным и технологическим требованиям [5,22, 5.24, 5.55, 5.64]. [c.475]


    Обратный осмос и ультрафильтрование. Метод основан на разделении растворов фильтрованием через мембраны с диаметром пор 1 нм (обратный осмос) и 5—200 нм (ультрафильтрование). Эти мембраны пропускают молекулы воды и непроницаемы для гидратированных ионов солей или молекул недиссоциированных соединений. От обычного фильтрования такой процесс отличается возможностью отделять частицы меньших размеров. Давление, необходимое для очистки методом обратного осмоса, 6—10 МПа, а для ультрафильтрования 0,1—0,5 МПа. В качестве материала мембран используются ацетатцеллюлоза, полиамиды и другие полимеры толщиной 100—200 нм [5.22, 5.24, 5.55, 5.64]. [c.485]

    Очистка сточных вод электродиализом основана на разделении под действием электродвижущей силы анионов и катионов. В электродиализаторе имеются анионо- и катионообменные мембраны. Метод широко применяется для опреснения соленых йод. С его помощью очищают сточные воды от соединений фтора и хрома при степени обессоливания 75—80 %, от радиоактивных загрязнений— при снижении активности на 99%. Срок службы мембраны зависит от загрязненности сточных вод взвешенными частицами и составляет 2—5 лет. [c.495]

    В—структурная константа мембраны при расчете селективности D—коэффициент диффузии Dam—коэффициент диффузии растворителя в мембране d—диаметр поры мембраны dr.a—диаметр гидратированного иона а—эквивалентный диаметр канала /о— пористость мембраны G—проницаемость мембраны АЯ—теплота гидратации I— ионная сила раствора 1—коэффициент Вант-Гоффа К—степень очистки раствора /Ср—коэффициент разделения к, La, Lp—расход концентрата, исходной жидкости и растворителя соответственно [c.11]

    Поскольку с помощью радиоактивного излучения и последующей химической обработки можно получать мембраны с порами заданного диаметра, а распределение пор по диаметрам чрезвычайно узкое, ядерные мембраны очень перспективны для микроаналитических исследований в цитологии и элементном анализе, для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом применялись для изучения размеров и формы различных типов клеток крови (в частности, для выделения раковых клеток из крови), для изучения вязкости крови и слипания ее клеток в зависимости от различных условий, для получения очищенной от бактерий воды в полевых условиях и многих других целей [59, 65—67]. [c.57]


    Мембрана Показатели очистки Проницаемость 0, л/(м2-ч) [c.84]

    Изучению влияния температуры на характеристики разделения обратным осмосом посвящено сравнительно небольшое число работ. Это объясняется тем, что ацетатцеллюлозные мембраны, которые получили наибольшее распространение при разделении, очистке и концентрировании водных растворов, разрушаются при температуре около 60 °С. Кроме того, с повышением температуры существенно возрастает скорость гидролиза ацетатцеллюлозных мембран [154], что сокращает срок их эффективной работы. Поэтому при использовании таких мембран в большинстве случаев нецелесообразно выходить за пределы комнатных температур. [c.183]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]

    Рассчитать процесс диафильтрации водно-спиртового раствора белка при следующих данных расход раствора р=1000 кг, концентрация белка 5% (х "=0,05) концентрация спирта 20% (х =0,2)-, допустимое содержание спирта в очищенном растворе 1% ( с =0,01) продолжительность процесса очистки 10 ч. Для диафильтрации используется мембрана со следующими характеристиками при рабочих условиях селективность по белку ф =0,998 селективность по спирту фНс=о,) проницаемость мембраны по 5%-ному водному раствору белка 0о=30 кг/(м -ч) коэффициент С=50. [c.244]

    Если в результате работы все же происходит загрязнение мембран, следует периодически проводить их очистку. Простейший способ очистки— это сбрасывание давления на несколько минут и промывание аппарата сильным потоком воды. При этом загрязнения отслаиваются от мембраны и вымываются из аппарата. Больший эффект дает промывка мембран слабым раствором соляной кислоты (pH 3) с последующей окончательной промывкой сильным потоком воды. Еще более эффективна, если только позволяет конструкция аппарата, механическая очист- [c.296]

    Изучался процесс очистки воды от микроорганизмов ультрафильтрацией. Разделению подвергались растворы 6 различных типов микроорганизмов при концентрациях до 160 000 единиц на кубической миллилитр. В десяти опытах очищенная вода была полностью стерильна и лишь в одном в ней были обнаружены бактерии, что авторы объясняют возможным дефектом мембраны или случайным попаданием бактерий в систему [6]. Данные, приведенные в работе [5], показали, что на мембранах отечественного производства оказывается возможным проводить очистку сточных вод от самых различных по природе растворенных веществ. Ниже приведены примеры применения обратного осмоса и ультрафильтрации в схемах очистки сточных вод ряда производств. [c.306]

    Эксперименты по применению обратного осмоса для очистки и концентрирования сбросной воды проводились на модельных радиоактивных растворах и на сбросных водах [200]. Было показано, что во всех опытах на модельных растворах активность воды после очистки снижается на 2—3 порядка. Последующие испытания, проведенные на реальной сбросной воде, подтвердили высокую эффективность обратноосмотической очистки радиоактивных отходов. В частности, применяя ацетатцеллюлозные мембраны, удается на два порядка снизить активность сбросных вод и достигнуть 100-кратного уменьшения их объема. [c.306]

    Первоначальные данные о применимости ультрафильтрации для очистки стоков не были такими многообещающими, как для обратного осмоса, поскольку грубые ультрафильтрационные мембраны пропу- [c.313]

    Большой интерес для очистки сточных вод, растворенные вещества которых могут легко переходить в коллоидную форму, представляют динамические мембраны. К этому типу сточных вод относятся, в частности, промывные воды гальванических производств. Эти воды отличаются высокой токсичностью и перед сбрасыванием в водоемы подвергаются глубокой очистке. В настоящее время наиболее распространены химические методы очистки, характеризующиеся высокой стоимостью и большим расходом химических реагентов. Так, очистка хромсодержащих сточных вод включает стадии восстановления шестивалентного хро ма до трехвалентного сульфатом натрия или серной кислотой, нейтрализации полученного раствора едким натром илп гидратом окиси кальция, отделения полученного осадка Сг(ОН)з в отстойниках. Причем на 1 кг СгОз расходуется около 5 кг кислот и щелочей. Указанные методы имеют и ряд других недостатков. Так, осадок, полученный в отстойниках, содержит много влаги и подвергается обезвоживанию на вакуум-фильтрах. Высушенный осадок, как правило, не перерабатывается и вывозится на захоронение. [c.317]


    К выбору мембраны для очистки растворов ПАВ  [c.323]

    Тип мембраны Метод предварительной очистки Электросопротивление, мкОм Селективность ф, % Содержание растворенного углерода. % Селективность ф, Го [c.326]

    Для очистки от растворенных примесей начинают применять метод обратного осмоса, или гиперфильтрации. Метод основан на отфильтровывании воды из раствора через полупроницаемые мембраны под давлением, превышающим осмотическое. Для этого метода используются ацетатцеллюлозные мембраны различной производительности по воде и селективности по растворенным веществам. Процесс осуществляется при температуре окружающей среды, без фазовых превращений. [c.346]

    Ранее диффузия водородсодержащего газа через мембраны из палладия и его сплавов с серебром была в основном лабораторным методом получения водорода. Однако в последнее время этот метод начали применять в промыщленности [36, 48, 49]. Значительной сложностью при разработке диффузионного разделения было создание мембраны, которая не отравлялась бы примесями, присутствующими в водородсодержащем газе. Основными компонентами, снижающими проницаемость диффузора, являются сероводород, непредельные углеводороды, углекислый газ и пары воды. Поэтому в схему установки диффузионного разделения включают блок очистки сырья. Оптимальные условия работы диффузоров из палладия следующие давление 35—40 ат, температура 300—400° С. [c.112]

    Д])угой тип мембраны — ионообменные мембраны — используют при очистке воды, проведении процессов элерстроосмоса и т, д. На них происходят ионообменные реакции, и они дают некоторый вклад в э.д.с., который обычно невелик и зависит от многих факторов. [c.207]

    За рубежом на основе ароматических хлорангидридов и ароматических аминов разработана мембрана с ультратонким (около 200 нм) слоем, которая характеризуется высокой водопроницаемостью (1 м /м yт) при рабочем давлении 1,5 МПа и степени очистки от солей 99,5%. Такое давление при обратном осмосе по сравнению с обычным (примерно 5 МПа) открывает принципиально новые возможности для его применения при во-доподготовке и разделении водоорганических и органических смесей. [c.107]

    Существенное преимущество обратного осмоса перед другими методами очистки сточных вод — одновременная очистка от неорганических примесей, что особенно важно в системах оборотного водоснабжения. Обеспечивается возможность получения наиболее чистой воды, так как мембраны могут задерживать практически все растворенные вещества и взвеси минерального и органического характера, в том числе бактерии, микробы и другие мнкроформы. [c.107]

    Мембраны из поликомпонентных сплавов на основе палладия, серебра и никеля допускают эксплуатацию при температурах до 600 °С, при этом необходима предварительная очистка разделяемой газовой смеси от серосодержащих соединений, окиси углерода, галогеивдов и других примесей, которые способны образовывать с металлами устойчивые химические соединения (гидриды, карбиды, нитриды, оксиды), снижающие скорость диффузии. Следует помнить, что при более низких температурах, помимо снижения коэффициента диффузии, падает скорость диссоциации газа и химическая стадия процесса проницания становится лимитирующей. [c.119]

    Мембраны. Для селективного выделения СО2 и НгЗ из смесей газов, содержащих в основном метан, в промышленном масштабе опользуют только полимерные (асимметричные или композиционные, плоские или в виде полых волокон) мембраны. В табл. 8.8 представлены характеристики мембран, полученных из наиболее перспективных полимерных материалов, применяемых для этих целей (в том ч И Сле и для получения гелиевого концентрата). Как видно из таблицы, лучшим. комплексом свойств для выделения СО2 и НгЗ обладают плоские асимметричные мембраны из ацетата целлюлозы, ультратонкие (с толщиной селективного слоя до 200 А) мембраны из сополимера поликарбоната с полидиметилоилоксаном (МЕМ-079), а также полые волокна на основе ацетата целлюлозы и полые волокна из полисульфона с полиорганосилоксаном типа КМ Монсанто . Перспективным представляется использование для очистки газов от СО2 и НгЗ высокоселективной мембраны на основе блок-сополимера Серагель [56]. [c.286]

    Фирма Сепарекс разработала процесс очистки природного газа от кислых компонентов на аппаратах рулонного типа (описание конструкции — см. разд. 8.1) с использованием асимметричной мембраны из ацетата целлюлозы [41—43]. [c.292]

    На установках с ацетатцеллюлозными мембранами возможно и осущать природный газ до необходимых норм, так как проницаемость паров воды через эти мембраны в 500 раз превышает проницаемость метана [4, 43]. Осушку можно производить и одновременно с очисткой от СО2 и НгЗ. Первая из установок Сепарекс работала в этом режиме (осушка — очистка от СО2) в течение 2 мес, причем снижения проницаемости, и селективности по СО2 обнаружено не было. Исходный газ был насыщен парами воды при 3,1 МПа в интервале температур 300—308 К, что соответствует 0,131—0,211% воды. С целью предотвращения конденсации паров воды на мембранах давление в исходном газе перед подачей на установку снижали до 1,7 МПа (относительная влажность 57%) или до 2,4 МПа (относительная влажность 78%,). [c.294]

    Грейс системс провела испытания полупромышленных установок с аппаратами рулонного типа по очистке газа от СО2 и Н2 [44]. Диаметр мембранного элемента 0,203 м (о материале мембраны в литературе сведений нет). Результаты испытаний трех установок, эксплуатируемых на различных месторождениях США, представлены в табл. 8.10. Все установки снабжены теплообменниками для регулирования температуры газа и фильтрами для очистки газов от брызг и паров. Из таблицы видно, что очищенный на мембранных установках газ (за исключением установ1Кн, состоящей из одного элемента), вполне удовлетворяет требованиям стандартов, предъявляемых к продукционному природному газу. [c.295]

    В результате очистки содержание ЗОг в газе снижается с 1,0 до 0,1% (об.). Однако селективность и стойкость мембраны из пленки РЭТСАР (на основе ПДМС) в среде ЗОг оказалась недостаточной для применения в промышленном масштабе. [c.332]

    Если примесный компонент имеет небольшую молекулярную массу, ультрафильтрация может быть использована для получения концентрата чистого продукта. В таком случае ультрафильтрация является аналогом диализа, но менее трудоемким процессом и более экономичным по времени и занимаемым производственным площадям. Если должен быть получен продукт высокой чистоты, проводят диафильтрацню. Как правило, высокопроницаемые ультрафильтрационные мембраны позволяют проводить очистку в 10-100 раз быстрее, чем при аналогичном процессе диализа. [c.281]

    В одной серии опытов использовалась культуральная жидкость а с предварительной грубой очисткой на центрифуге с фактором разделения Кр = 30, в другой — жидкость б прозрачного вида, достигнутого центрифугированием при Л = 2340. Из приведенных данных видно, что при давлении 0,3 МПа имеются весьма незначительные потери ферментати пиой активиости с фильтратом, а при давлениях 0,6 МПа и выше эти нотс )и практичеокн отсутствуют. Проницаемость мембраны при давлениях свыше [c.287]

    Очистка растворов некоторых веществ бывает необходимой для ироведення точных анализов. При этом ультрафильтрация может оказаться наиболее простым и эффективным методом очистки. Например, у льтрафильтрацией крови через микропористые мембраны можио получить фильтрат, в котором легко определить содержание глюкозы простым колориметрическим методом, так как в фильтрате отсутствуют протеины, полисахариды и друпие высокомолекулярные вещества, влияющие на результат анализа. [c.287]

    Ультрафильтрация может быть успешно применена и непосредственно в медицинской практике, например при лечении острой и хронической почечной недостаточности. Посредством непрерывной диафильтрации из крови больного человека удаляются токсины и продукты обмена веществ. Для этих целей используют мембраны, удерживающие только альбумин и другие высокомолекулярные вещества. В фильтрат проходят нужные высокомолекулярные соединения, имеющие относительно небольшую молекулярную массу, и все низкомолекулярные вещества, причем без существенного изменения их концентраций. При введении в полученный стерильный препарат соответствующих компонентов в нужной концентрации получают кровьнеобходимого состава, которую вводят пациенту. Преимущество этого метода очистки перед диализом состоит в том, что очистка крови производится быстрее н на менее громоздки.х аппаратах. Кроме того, ультрафильтрацией можно удалять некоторые вещества, трудно отделяемые обычным диализом. [c.288]

    Для предотвращения снижения производительности установки, вследствие частичного забивания взвешенными частицами пор мембран, можно использовать два метода 1) периодическая очистка мембраны химическим способом и 2) введение в схему обессоливания воды стадии предварительной обработки. Поскольку первый способ связан с необходимостью временной остановрси обратноосмотической системы на чистку мембран, дополнительными затратами труда и образованием загрязненных сточных вод, то обычно применяют специальную предобработку обессоливаемой воды. [c.295]

    Исследования показали, что из различных типов мембран наилучшими для очистки стоков варочного процесса оказались плотные мембраны. В экспериментах использовались мембраны фирм Дженерал Атомик Корп. и Хавенс . Оказалось, что проницаемость этих мембран зависит от рабочего давления (в пределах 1,4—4,6 МПа). В табл. VI, 9 показаны результаты очистки стоков первой ступени отбелки сульфитной целлюлозы на трубчатых мембранах фирмы Хавенс разной плотности при давлении 4,0 МПа. [c.314]

    Интересно отметить, что довольно близкие величины селективности по каждому иону наблюдаются независимо от вида мембранообразующей гидроокиси и наличия в растворе других ионов. Это позволяет предположить, что динамические мембраны могут использоваться для очистки как индивидуальных, так и смешанных сточных вод гальванических производств. [c.317]

    Для очистки сточных вод с низким содержанием ПАВ могут быть рекомендованы только обратноосмотические мембраны, поскольку они обладают высокой селективностью к мономеру. Для практического выбора мембраны при разделении того или иного ПАВ можно использовать график, представленный на рис. У1-23, на котором изображены зависимости селективности обратноосмотических мембран по растворен-ны(м поверхностно-активным веществам фпдв от селективности мембран по хлористому натрию при концентрации ПАВ 1000 мг/л, т. е. при концентрации, близкой к ККМ. [c.322]

    Значения усредненной эффективности ацетатцеллюлозной мембраны типа. 4, имеющей ло 0,5%-ному раствору Na l селективность 95,3%, приведены ниже (метод предварительной очистки — осветление коагулированием)  [c.325]

    Сравнение ацетатцеллюлозных мембран двух типов А и В) при очистке бытовых сточных вод, предварительно обработанных коагуляцией с последующим озонированием, показало, что мембрана типа В (селективность по 0,5%-ному раствору Na l 91%) обладает в среднем примерно на 5% более высокой селективностью, чем мембрана типа А. [c.325]

    В табл1ще VI, 10 приведены данные по влиянию предварительной очистки бытовых сточных вод на усредненную эффективность мембраны. [c.326]


Смотреть страницы где упоминается термин Мембраны очистка: [c.315]    [c.283]    [c.291]    [c.293]    [c.141]    [c.240]    [c.303]    [c.311]    [c.253]    [c.247]    [c.56]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.354 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.354 ]

Физическая Биохимия (1980) -- [ c.218 ]




ПОИСК







© 2025 chem21.info Реклама на сайте