Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принцип действия турбины

    Принцип действия турбины 261 [c.261]

    Принцип действия турбины [c.261]

    Принцип действия турбины 243 [c.243]

    Глава XIX ТУРБИНА ТУРБОБУРА 96. Принцип действия турбины [c.243]

Рис. 42. Принцип действия турбины Рис. 42. <a href="/info/3880">Принцип действия</a> турбины

    Принцип действия карбюратора заключается в следующем. Воздуходувкой, приводимой в движение электромотором пли опускающимся грузом, в карбюратор подается воздух, который поступает в резервуар с водой, туда же специальным приспособлением по каплям вводится бензин. Воздух в резервуаре для лучшего насыщения бензином пропускается через турбину, которая перемешивает воду [c.53]

    На нефтегазоперерабатывающих заводах для перекачки жидкостей и газов применяют большое число насосов и компрессоров. Эти агрегаты по принципу действия разделяют на центробежные и поршневые, по роду привода — на паровые, с приводом от электродвигателя, паровой турбины или двигателя внутреннего сгорания. Группа оборудования, рассмотренная ниже, характеризуется большим разнообразием типоразмеров, сравнительно небольшими габаритными размерами и массой (обычно не более 10 т). [c.328]

    Принцип действия центробежного насоса. Схема установки центробежного насоса приведена на рис. ПМ. Центробежный насос состоит из рабочего колеса 5 с криволинейными лопатками 7, насаженного на вал 6. Вал приводится во вращение от электродвигателя или паровой турбины. Рабочее колесо вращается в неподвижном корпусе 4, рабочая спиральная камера которого имеет переменное сечение (улитку) и через задвижку 9 и обратный клапан 10 соединена с нагнетательным трубопроводом 11. Последний присоединен к приемному резервуару. [c.72]

    Для экстракции применяют экстракторы разнообразных типов, В технологии неорганических веществ наибольшее распространение получили смесители — отстойники и колонны. Смеситель-отстойник состоит из камеры смешения и отстойной камеры. Принцип действия его заключается в следующем. Турбинная мешалка засасывает смесь органической и водной фаз через патрубок и выбрасывает ее в камеру смешения. Из камеры смешения эмульсия поступает в камеру отстаивания, из которой водная фаза засасывается через отверстие в нижней части разделительной перегородки в смесительную камеру следующей степени п + 1). Органическая фаза переливается через отверстие в верхней части перегородки в смесительную камеру ступени п— 1, Каждый единичный экстрактор работает как прямоточный аппарат, а в целом экстрактор работает по принципу противотока. Смесители-отстойники могут просто собираться в каскады с любым заданным числом ступеней (рис. 102, 103). [c.337]


    По принципу действия и по конструкции элементов проточной части ковшовые турбины весьма существенно отличаются от радиально-осевых турбин. [c.51]

    Для выяснения принципа действия отсасывающей трубы рассмотрим три возможных варианта установки турбины (рис. 81)  [c.139]

    Устройство и принцип действия растворителей. Равновесие системы твердое вещество—жидкость наступает в момент, когда раствор становится насыщенным. Концентрация растворенного вещества в насыщенном растворе зависит от физико-химических свойств растворимого вещества и растворителя, а также от температуры. Так как насыщенного состояния в первую очередь достигают слои жидкости, примыкающие к поверхности твердых частиц, то быстрое удаление этих слоев в массу ненасыщенного раствора является необходимым условием интенсификации процесса растворения. В связи с этим аппараты периодического действия, представляющие собой горизонтальные нли вертикальные сосуды, снабжаются механическими мешалками (лопастными, пропеллерными, турбинными и др.), циркуляционными насосами или пневматическим смешением. В аппаратах непрерывного действия, кроме устройств для механического перемешивания, стремятся еще к созданию высоких скоростей сквозных потоков жидкой фазы относительно растворяющихся твердых частиц. Так как переход растворимого вещества в жидкую фазу является диффу- [c.598]

    Эти агрегаты по принципу действия разделяют на центробежные и поршневые, по роду привода — на паровые, с приводом от электродвигателя, паровой турбины или двигателя внутреннего сгорания. [c.255]

    Перемешивающие устройства реакторов. Перемешивание жидкости в реакторах-котлах может быть в большинстве случаев осуществлено лопастными, якорными, рамными, турбинными или трехлопастными мешалками. Последние по конструкции и принципу действия аналогичны ранее применяемым пропеллерным мешалкам. [c.239]

    Принцип действия. Идея конструкции быстроходных насосов заимствована из теории водяных турбин, где она возникла из стремления получить турбины, имеющие возможно большее число оборотов при сравнительно малых напорах. Как уже было выяснено ранее, увеличение быстроходности связано с уменьшением угла 2 и уменьшением отношения диаметра выходного к диаметру входному Dl. Последнее условие приводит, естественно, к приближению величины к [c.61]

    В зависимости от устройства лопастей и принципа действия мешалки разделяют на лопастные, рамные, якорные, пропеллерные, турбинные и специальные (рис. [c.205]

    Присосы в конденсаторах турбин. Большинство конденсаторов мощных турбин по принципу действия являются теплообменниками поверхностного типа, в которых по трубкам движется охлаждающая вода, а в межтрубном пространстве проходит конденсирующийся пар и образующийся конденсат. Воздушные конденсаторы и конденсаторы контактного типа с радиаторной охладительной башней ( сухой градирней) применяются на крупных ТЭС редко. [c.104]

    Многие элементы системы регулирования производительности компрессоров и особенно приводных турбин выполнены как узлы машины и являются ее конструктивным продолжением. Использование элементов автоматики общепромышленного применения весьма ограниченно. Именно поэтому специалисты по автоматизации и персонал служб КИПиА практически не привлекаются к обслуживанию систем регулирования этих агрегатов. Вместе с тем, разработку и конструирование этих систем также, как и их действие, осуществляют по законам, являющимся предметом изучения в теории автоматического регулирования. В соответствии со сказанным персонал, обслуживающий компрессорную установку, должен знать основные положения теории регулирования и особенности конструктивного выполнения системы регулирования. Эти требования в равной мере относятся и к ремонтному персоналу, поскольку, не зная принципов действия системы регулирования, нельзя произвести высококачественный ремонт ее и невозможно проверить правильность сборки и выполнить необходимую наладку после ремонта. Это подтверждается, в частности, [c.82]

    Принципы действия активной паровой турбины [c.30]

    Шламовые центробежные насосы (рис. 40) по принципу действия не отличаются от центробежных вентиляторов (см. стр. 124). При быстром вращении турбины (до 3000 об мин), заключенной в корпусе 1, в нем создается разрежение и шлам засасывается по патрубку 2. Под действием турбины шлам приходит во вращение, приобретает большую центробежную силу и выбрасывается из корпуса по патрубку 3. Патрубки соединяются со шламопроводами. [c.135]

    Принцип работы механических аэраторов основан на вовлечении воздуха непосредственно из атмосферы вращающимися частями аэратора (ротором) и перемешивания его со всем содержимым аэротенка. Конструкция ротора может быть конической, дисковой, цилиндрической, турбинной, колесной, винтовой, а ось вращения может располагаться вертикально и горизонтально. По принципу действия механические аэраторы делят на импеллерные и поверхностные. Наиболее широко распространены механические аэраторы поверхностного типа. [c.98]

    Некоторые из механических счетчиков могут быть использованы в качестве приборов, измеряющих расход (расходомеров), при замене в них суммирующих счетных механизмов тахометрическими устройствами. По принципу действия применяющиеся в таком случае тахометри-ческие устройства разделяют на механические, электромагнитные, оптические и др. Одним из распространенных расходомеров такого типа является турбинный расходомер с магнитным тахометром (рис. 1-44). Конструктивно он аналогичен турбинному счетчику. Некоторые упрощения конструкции связаны с отсутствием механической передачи оборотов. [c.92]


    Для Д. жидкостей применяют след, устройства гомогенизаторы, в к-рых жидкая смесь продавливается под высоким давлением (до 35 МПа) через отверстия сечением ок. 10" см или через узкий кольцевой зазор спец. клапана коллоидные мельницы, в к-рых жидкость диспергируется при прохождении через конич. зазор шириной до 25 мкм между статором и ротором, вращающимся с частотой порядка 2-10 об/мин смесители инжекционного типа и форсунки, работающие по принципу действия струйного насоса (см. Насосы), высокоскоростные мешалки турбинного, пропеллерного и др. типов (см. Перемешивание). Кроме того, Д. осуществляют с помощью акустич. и электрич. устройств. К акустич. устройствам относятся, напр., ультразвуковые свистки и сирены для эмульгирования, магнито-стрикц. преобразователи для получения суспензий, волновые концентраторы (в виде распылительной насадки) дпя генерирования аэрозолей (см. также Ультразвуковые аппараты). Действие ультразвуковых диспергаторов основано на явлении кавитации-образовании в жидкости заполненных газом каверн, или полостей при их захлопывании возникают ударные волны, приводящие к разрушению твердых тел и эмульгированию жидкости. Работа устройств для электрич. эмульгирования или распыливания основана на сообщении жидкости, точнее пов-сти жидкой диспергируемой фазы при ее истечении через спец. сопло либо разбрызгивающее приспособление избытка электрич. зарядов. Отталкивание одноименных зарядов в поверхностном слое приводит к снижению межфазной энергии, или поверхностного натяжения (см. Поверхностные тления), что способствует Д. [c.77]

    Дииамич. компрессоры по принципу действия подразделяются на турбинные (турбокомпрессоры) и струйные. В турбокомпрессорах поток газа ускоряется в результате контакта его с лопатками вращаю1цегося рабочего колеса. Наиб, распространены радиальные и осевые машины. Ра- [c.447]

    На установках малой (и отчасти средней) производительности устанавливают поршневые детандеры, здесь не описываемые. Агрегаты большой производительности оснащены турбоде-тандерами, принцип действия которых подобен принципу действия паровых турбин. Энергия детандера используется для Привода электродвигателя, работающего в режиме генератора. [c.67]

    Принцип действия установки можно проиллюстрировать примером использования в качестве легкокипящего теплоносителя фреона. В этом случае в греющем контуре установки пар давлением не более 0,12-0,20 МПа подогревает фреон до 70-85°С, что соответствует данле-нию паров последнего 1,4-1,6 МПа. Пары фреона направляют в турбину. Кроме электроэнергии, установка выдает конденсат греющего пара. В соответствии с расчетами, себестоимость электроэнергии, вырабатываемой в такой установке, в три раза ниже, чем на ТЭЦ (Розенгарт...). [c.420]

    Анализ устройства и принципа действия центробежного насоса показал, что эта машина будет иметь достаточную эффективность при условии быстроходного привода. Центробежный насос был предложен Дени Папе-ном в 1689 году, затем независимр от него изобретен выдающимся русским инженером А.А.Саблуковым. Однако только после появления первой паровой турбины, электродвигателя, а затем и газовой турбины, центробежные насосы начали триумфальное шествие во всех отраслях машиностроения. [c.47]

    В пневматических системах широкое распространение получили объемные пневматические двигатели. Объемные пневматические двигатели, как и гидравлические, делятся на двигатели возвратно-поступательные (пневмоцилиндры), поворотные и вращательные (пневмомоторы), Кроме того, в ряде пневмосистем ограниченно используются динамические пнев-модвигатели - турбины, работающие с использованием энергии газовых потоков. По конструкции они принципиально не отличаются от гидравлических (лопастных) турбин. Поскольку принцип действия пневматических и гидравлических двигателей одинаков, рассмотрим конструктивные осо- [c.302]

    Принцип действия ГТУ адсорбционного цикла состоит в следующем. В рабочее тело — инертный газ — вводится твердая фаза в виде мелкодисперсной пыли, способной адсорбировать этот газ. Так как адсорбция происходит при более низких температурах, чем десорбция, то перед компрессором часть газа поглотится твердой фазой, а в тракте перед турбиной выделится из нее. Таким образом, через компрессор пройдет меньшее количество газа, чем через турбину, соответственно изменится соотношение работ турбины и компрессора, что приведет к увеличению к.и.д. установки. По сравнению с обычным замкнутым циклом ГТУ в контуре ГТУ адсорбционного типа появляются два новых элемента — адсорбер и десорбер. Принципиальная схема ГТУ адсорбционного замкнутого цикла приведена на рнс. I, А, диаграмма 7 -5 цикла изобралсена на рис. 1, б. [c.91]

    В процессах, протекающих при высоких давлениях, для снижения расхода электрической энергии, преобразуемой в механическую, стремятся использовать энергию сжатых газов или жидкостей, находящихся под давлением. Примером этого является установка, так называемых агрегатов мотор — насос — турбина , принцип действия которых изображен на рис. 12. Газ, находящийся под давлением, поступает в башню 1 снизу и соприкасается на насадке с жидкостью. Газ выходит из башни сверху, а жидкость снизу. Рядом с башней находится агрегат мотор — насос — турбина , в котором мотор 2, колесо турбины 3 и рабочие колеса многоступенчатого насоса 4 имеют общий вал. Насос 4 подает жидкость на орошен-ие башни. Вытекающая из башни жидкость, находящаяся под давлением, попадает на лопатки турбины 3, вращает колесо турбины и теряет энергию. Поскольку колеса турбины и насоса находятся на одном валу, энергия жидкости, таким образом, используется для работы насоса, т.е. для подачи жидкости в башню. Потери [c.50]

    Для Д. жидкостей примев., напр., след, устр-ва гомогенизаторы, в к-рых жидкая смесь продавливается под высоким давл. (до 3,5-10 Па) через отверстия сечением ок. 10 см или через узкий кольцевой зазор спец. клапана коллоидные мельницы, в к-рых жидкость диспергируется при прохождении через конич. зазор шириной до 25 мкм между статором и ротором, вращающимся с частотой 2-10 об/мин смесители инжекц. типа я форсунки, работающие по принципу действия струйного насоса (см. Перемеичг-ние жидкостей), высокоскоростные мешалки турбинного и др. типов (см. Перемешивание). Примен. также акустич. и электрич. методы Д. К первым относятся, напр., ультразвуковые свистки и сирены для эмульгирования, аппараты с магнитострикц. преобразователями для получ. суспензий, волновые концентраторы (в виде распылительной насадки) для генерирования аэрозолей. Электрич. эмульгирование или распыление происходит гл. обр. под действием сил электростатич. отталкивания, возникающих в результате сообщения жидкости при ее истечении через спец. сопло или разбрызгивающее устр-во избытка поверхностных электрич. зарядов. [c.180]

    Важным показателем таких преобразователей расхода является минимальный измеряемый расход. Преобразователь расхода (турбинка) связан со счетным механизмом (в водосчетчиках) или с электрическим тахометрическим преобразователем (в турбинных расходомерах). Поскольку усилие, необходимое для привода счетного механизма, в счетчиках больше, чем в расходомерах, то минимальный предел измерения расхода в счетчиках выше, чем в расходомерах. Из принципа действия тахометрических преобразователей расхода видно, что они измеряют обьемные расходы. Для измерения массового расхода необходимо учитывать плотность среды. [c.481]

    Масляные насосы. Масло подают в систему маслоснабжения маслоиасосами, от надежности которых зависит работа всей системы. Насосы для подачи масла используют как объемные (зубчатые шестеренчатые, винтовые, плунжерные), так и динамические (центробежные, струйные). Выбор типа насоса зависит от назначения и конструктивных особенностей компрессорного агрегата и требуемого давления масла, бъемные и динамические насосы имеют различные характеристики, поэтому при использовании их следует учитывать присущие им особенности. Привод насосов осуществляется от вала основного агрегата или электродвигателем, паровой турбиной. Для подачи масла на смазку подшипников, в систему регулирования, а также к уплотнениям компрессоров при давлении до 3 МПа применяют центробежные, шестеренчатые и винтовые насосы. При более высоких давлениях, требуемых для сис тем уплотнения, применяют только объемные насосы, причем при особенно высоких давлениях уплотняемого газа, достигающих 30 МПа, используют плунжерные насосы различных типов. Принцип действия объемного насоса заключается в вытеснении определенного объема масла за каждый оборот вала. [c.13]

    Степень неравномерности регулятора должна отвечать данным завода-изготовителя. Обычно она составляет 6—127о от средней частоты вращения вала турбин для рабочего хода муфты регулятора. Для геометрического хода муфты степень неравномерности выше, поскольку геометрический ход всегда больше рабочего. Соотношение рабочего и геометрического ходов различно и зависит, помимо всего прочего, от принципа действия механизма управления (см. разд. 3-1). При механизме управления, воздействующем на пружину регулятора, рабочий ход обычно составляет 0,6—0,8 геометрического. При воздействии на буксу золотника ступени усиления это соотношение меньше. [c.134]

    Центробежные компрессоры по принципу действия тождественны центробежным вентиляторам, но более мощны и работают на более высоких скоростях, благодаря чему развивают более высокие давления— до 1 атм на одну ступень. При соединении на одном валу двух или нескольких отдельных ступеней с выходными лопатками между ними, для превращения кинетической энергии можно получить еще более высокие давления многоступенчатые машины этого типа изготовляются для давлений до 10 ат. Такой многоступенчатый центробежный компрессор подобен турбине водяного пара как по принципу действия, так и по общей конструкции. Давление, приходящееся на ступень, зависит от размеров и скорости вращения обычно максимальное отношение давлений на ступень составляет около 1,2. Известны машины даже с 30 степенями. Преимуществами этого типа компрессора по сравнению с поршневь<йи компрессорами являются 1) компактность, 2) отсутствие клапанов, 3) отсутствие больших изнашивающихся частей, 4) отсутствие пульсации у выпускаемого газа, 5) более простое регулирование объема, 6) небольшие эксплоатационные расходы, 7) возможность непосредственного соединения с турбиной. [c.318]

    Принцип действия такого прибора (рис. 7.11) основан на том, что число оборотов вертушки (турбинки), помещенной в трубе, пропорционально количеству прошедшей через трубу воды. Вращение турбинки через редуктор передается счетному механизму, который указывает количество (в м ) протекшей через него воды. Водосчетчики применяют для учета количества поданной воды на насосных станциях с подачей до 3400 м /сутки или при равномерной подаче до 140 м 1ч. Турбинные водосчетчики выбирают, пользуясь приложением 10. Достоинством турбинных водосчетчиков является простота их конструкции и обслуживания, а также небольшая стоимость. [c.133]

    Принцип действия глубинных (импеллерных) аэраторов с всасыванием атмосферного воздуха заключается в том, что заглубленный полный ротор прокачивает жидкость через трубу, имеющую отверстия в верхней части на уровне жидкости. При этом поток жидкости вовлекает через отверстия воздух, который, проходя через ротор, интенсивно диспергируется. Водовоздушная смесь выбрасывается в нижней части резервуара и смешивается со всем объемом жидкости, что обеспечивает хорошую аэрацию. Среди зарубежных конструкций импеллерных аэраторов получили распростране-ни к аэраторы "Диффума", "Писта" и др. При этом с целью повышения эффективности аэрации применяются различные конструкции роторов в виде винтов, лопастных колес и турбин с различным профилем лопаток. В СССР применяется разработанный НИКТИ ГХ импеллерный аэратор АИ-Ш производительностью 1—2 кг О2/4, обслуживающий зону объемом 70-100 м (рис. 47). Аналогичен по конструкции Кавитатор С-16" Института химии древесины АН ЛатвССР, который при диаметре ротора до 300 мм, его заглублении около 1 м и частоте вращения 1450 мии 1 растворяет жидкости [c.72]


Смотреть страницы где упоминается термин Принцип действия турбины: [c.2]    [c.53]    [c.115]    [c.191]    [c.90]   
Смотреть главы в:

Насосы и компрессоры -> Принцип действия турбины

Насосы и компрессоры -> Принцип действия турбины




ПОИСК





Смотрите так же термины и статьи:

Принцип действия активной паровой турбины



© 2025 chem21.info Реклама на сайте