Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы адсорбционной хроматографии

    ТИПЫ АДСОРБЦИОННОЙ ХРОМАТОГРАФИИ [c.353]

    Новыми типами адсорбционной хроматографии являются фронтальный анализ и вытеснительная хроматография. Положение и свойства адсорбционных полос при хроматографировании этими методами схематически изображены на рис. 330, б и е соответственно. [c.354]

    Распределительная хроматография с неподвижной гидрофильной фазой наиболее пригодна для разделения веществ, хорошо растворимых в воде или способных образовывать растворимые в воде соли. К таким веществам относятся сахар, аминокислоты, многие органические красители, большая часть алкалоидов, моно- и поликарбоновые кислоты, спирты и т. д. Нередко для разделения веществ этого типа адсорбционная хроматография совершенно непригодна. [c.481]


    Разработан специальный тип адсорбционной хроматографии— так называемая хроматография на серебросодержащих сорбентах (адсорбентах, предварительно пропитанных раствором нитрата серебра, или на катионообменниках в Ад+-форме). В принципе в этом виде хроматографии используется быстрое и обратимое взаимодействие ионов серебра и ненасыщенных соединений, приводящее к образованию я-комплексов [85]. Поэтому хроматографию на серебросодержащих сорбентах можно с успехом применять для разделения различных ненасыщенных соединений, например углеводородов [50], липидов [48], включая разделение цис-транс-томеров. [c.159]

    Ароматические структурные элементы этих сложных гибридных молекул наиболее резко отличаются от парафиновых и циклопарафиновых звеньев по составу, свойствам и химическим реакциям, поэтому большая часть методов разделения смесей высокомолекулярных углеводородов по типам молекул (избирательное растворение, адсорбционная хроматография и др.) основана на использовании именно этой, химически более активной ароматической части гибридных молекул. Так, гибридные молекулы углеводородов молекулярного веса около 400 ( jb—Сзо) содержащие только одно бензольное кольцо, удается выделить из сложной смеси нри помощи адсорбционной хроматографии, хотя доля атомов углерода, входящих в бензольное кольцо, составляет всего 20—25% от их общего числа в молекуле. [c.116]

    Применение разнообразных вариантов метода адсорбционной хроматографии [9] позволило за последние 20—25 лет достигнуть значительных результатов в разделении сложных углеводородных смесей на компоненты, содержащие и не содержащие в молекуле ароматические ядра (парафино-циклопарафиновая часть). Этот метод широко применяется не только в исследовательских лабораториях как весьма надежное средство разделения но типам структур сложных смесей углеводородов и других органических соединений, но и внедряется на предприятиях нефтеперерабатывающей, химической и других отраслей промышленности [10—14]. [c.116]

    Газо-адсорбционная хроматография наиболее пригодна для анализа легких газов, к числу которых относят водород, азот, исло-род, газы нулевой группы периодической системы, метан, оксид и диоксид углерода, оксиды азота и др. Все они не регистрируются ионизационными детекторами. Поэтому их анализ производят при помощи катарометров или же высокочувствительных детекторов специального типа. Для газо-адсорбционной хроматографии характерна возможность разделения смесей изотопов. [c.65]


    Согласно классификации А. В. Киселева сорбенты, используемые в газо-адсорбционной хроматографии, можно подразделить на четыре структурных типа. [c.84]

    Прибор содержит несколько блоков, вмонтированных в металлический стенд (рис. 61). Блок колонки состоит из хроматографической колонки, трансформатора, вентилятора, термопары и детектора. Хроматографическую колонку, изготовленную из нержавеющей стали (внутренний диаметр 4 мм, длина 3,5 м), заполняют в зависимости от цели анализа силикагелем или алюмогелем. Рекомендуется в качестве адсорбента для анализа углеводородов до С, включительно применять силикагель, для анализа непредельных углеводородов — алюмогель. Прибор при соответствующей смене адсорбента допускает применение как газожидкостной хроматографии (разделение смеси летучих органических веществ различных типов), так и адсорбционной хроматографии на угле и молекулярных ситах (анализ низкокипящих газов). [c.154]

    В газо-адсорбционной хроматографии (ГАХ) в качестве поглотителей используют такие адсорбенты, как пористые кристаллы — цеолиты, ряд тонкопористых аморфных адсорбентов (силикагели, алюмогели, активные угли и полимеры). Типы сорбентов, используемых в ГАХ 1) непористые адсорбенты 2) однороднопористые адсорбенты (размеры всех пор близки) 3) тонкопористые адсорбенты (размер пор меньше 0,5 нм) 4) неоднородно-пористые адсорбенты. [c.234]

    Наиболее подходящим методом испытания очищенного электролитического водорода на отсутствие примесей кислорода и азота является метод адсорбционной хроматографии на активированных молекулярных ситах типа 5А (см. стр. 68). На них очень четко разделяются при комнатной температуре водород, кислород и азот. [c.100]

    Для проверки чистоты электролитического кислорода может -быть с успехом применен метод адсорбционной Хроматографии на активированных молекулярных ситах типа 5А. Испытание проводят в условиях, аналогичных описанным для проверки степени чистоты электролитического водорода (см. стр. 100). [c.106]

    Наиболее эффективным и быстрым методом очистки азота от трудно отделяемых примесей аргона и кислорода является метод адсорбционной хроматографии на активированных молекулярных ситах типа 5А. [c.180]

    Аппаратура, используемая в адсорбционной хроматографии, проста и некоторые общие типы ее показаны на рис. 36. [c.140]

    Для очистки водорода очень эффективным, является метод газо-адсорбционной хроматографии на молекулярных ситах типа 5А, на мелкопористых силикагелях марок МСМ, АСМ и др. или на активированных углях марок КАД, АГ-2, АР-3 и др. [c.97]

    Среди перечисленных типов связи вещества с сорбентом не названо гидрофобное взаимодействие. Случай, когда оно играет доминирующую роль, был выделен в особый вид хроматографии, но, разумеется, силы гидрофобного взаимодействия могут участвовать и в сложной системе связей нри адсорбционной хроматографии. [c.222]

    Недостатки, присущие адсорбционной хроматографии и подробно рассмотренные в разделе 2.1.3, а также стремление исследователей преодолеть недостатки, характерные для распределительной хроматографии с нанесенными полярными фазами, способствовали разработке сорбентов с привитыми полярными фазами. Такие сорбенты, по крайней мере основных типов, нашедших наиболее широкое применение, в настоящее время выпускаются большинством производителей. [c.21]

    Это явление характерно для большинства случаев разделения при адсорбционной хроматографии, когда течение процесса выражается изотермами типа изотерм Фрейндлиха или Лэнгмюра (см. стр. 323). Только в исключительных случаях, когда процесс может быть выражен линейной изотермой адсорбции, распределение концентраций в адсорбционной полосе симметрично. В некоторых случаях, когда изотерма адсорбции имеет вид, изображенный на рис. 323, г, может происходить диффузия всей полосы. При этом верхний край адсорбционной полосы изображается крутой кривой. [c.337]

    Основные элементы хроматографического процесса рассмотрим на примере разделения бинарной смеси в условиях колоночной жидкостной адсорбционной хроматографии. Представим себе трубку, заполненную пористым адсорбентом (колонку), через которую непрерывно течет растворитель (рис. 1.1). Адсорбент (сорбент, наполнитель колонки) удерживается в колонке фильтрами, он неподвижен и потому часто называется неподвижной фазой. Растворитель, перемещающийся относительно сорбента, называют также подвижной фазой (и в некоторых случаях — элюентом). Введем в верхнюю часть колонки по одной молекуле соединений — сорбатов, обозначаемых далее X и У. При движении вдоль колонки эти молекулы будут диффундировать внутрь пор сорбента и в результате межмолеку-лярных взаимодействий того или иного типа адсорбироваться на поверхности неподвижной фазы. Доля времени, в течение которой молекулы находятся в адсорбированном состоянии, определяется силой межмолекулярного взаимодействия сорбатов X, У с сорбентом. При очень слабой адсорбции молекулы почти все время проводят в растворе подвижной фазы и поэтому перемещаются вниз по колонке со скоростью, лишь незначительно уступающей скорости движения подвижной фазы. Наоборот, при очень сильной адсорбции молекулы X и У почти не отрываются от поверхности и скорость их перемещения вниз по колонке крайне незначительна. [c.11]


    Наиболее перспективными считаются методы адсорбционной хроматографии, которые могут реализоваться в двух вариантах. Первый - одностадийный в собственно хроматографическом режиме. При пропускании через колонку с сорбентом раствора олигомера в результате процессов адсорбции и десорбции, протекающих одновременно, макромолекулы разного типа функциональности соответственно распределяются между твердой фазой и раствором и элюируются в определенном порядке (см. главы 3, 4). Второй вариант - двухстадийное разделение в результате дробной десорбции. На первой стадии из растворителя проводят адсорбцию всего растворенного олигомера на твердую насадку колонки, на второй - производится дробная десорбция ранее адсорбированных макромолекул путем последовательного пропускания через колонку нескольких растворителей с нарастающей способностью к вытеснению олигомера, который вымывается в составе отдельных фракций. [c.339]

    Этот недавно введенный метод хроматографии вновь выдвинул на передний край хроматографию на колонках — самую старую форму аналитического искусства. Основное достижение, благодаря которому стало возможным применение нового метода, — это технология получения частиц, устойчивых к высокому давлению и имеющих одинаковый диаметр меиее 50 мкм. Более ранние типы частиц обычно имеют твердый центр, например из стекла, и тонкий пористый наружный слой, например из кремнезема благодаря небольшому размеру и большой площади поверхности этих частиц обеспечивалась высокая эффективность адсорбционной хроматографии. Если частицы покрыты подходящей неподвижной фазой, высокоэффективную жидкостную хроматографию можно использовать как метод распределения. [c.419]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]

    N-фopмилпpoизвoдныe выделялись из смеси продуктов катионным обменом на КУ-1, а восстановленные й непрореагировавшие вещества — адсорбционной хроматографией на силикагеле. По этой схеме определен состав оснований из ряда нефтей [186]. Однако полученные данные скорее всего не отражают истинных соотношений между типами, так как трициклическая фракция неф- [c.23]

    Для более глубокой дифференциации высокомолекулярных углеводородов исследователи применили комплексную методику, позволяющую разделять сложные углеводородные смеси по типам структур молекул и получать более простые смеси, содержащие группы углеводородов, более близкие по строению и молекулярным весам. Сначала дистиллятные масляные фракции подвергали депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно исследуемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировали, а затем депарафинизировали. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась дальнейшей дифференциации при помощи двух методов адсорбционной хроматографии и комплексообразования с карбамидом. Хроматография на силикагеле позволяет разделить углеводороды на три основные структурные группы (парафиново-циклопарафиновая и две фракции ароматических углеводородов). Комплексообразование с карбамидом позволяет выделить из смеси предельных структур углеводороды с достаточно длинными парафиновыми цепочками, способные образовать с карбамидом кристаллические комплексы. Твердые парафины, выделившиеся из петролатума в первой стадии, т. е. при его депарафинизации избирательно действующим растворителем, и составляющие около 2/з всего петролатума, далее не исследовались. [c.198]

    Полученные экстракцией или адсорбционным разделением концентраты гетероатомных соединений содержат примеси, глав ным образом моно- и бициклических аренов. Очистка от углеводо родов и разделение серусодержащнх соединений на группы осу ществляется вакуумной дистилляцией, адсорбционной хромато графией, ступенчатой реэкстракцией растворами серной кислоты [248], комплексообразованием с солями ртути или серебра Очистку и разделение азотсодержащих оснований проводят с по мощью ионообменной или адсорбционной хроматографии [249, 250]. Кислородные соединения (адсорбционные смолы) очищают от углеводородов и разделяют на классы методами адсорбционной хроматографии, вакуумной дистилляции и этерификацией борной кислотой [248]. Дальнейшие исследования гетероатомных соединений направлены на выявление преобладающего типа соединений в очищенных образцах или идентификацию индивидуальных соединений. [c.142]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]

    Адсорбция из растворов олигомеров — полимеров со сравнительно небольшой молекулярной массой (от 300 до 5000) —происходит в соответствии с их химическим строением. На рис. 18.4 показано разделение олигобутадиенов и их моно- и диоксипроизвод-ных со средней молекулярной массой около 1200 на колонне с широкопористым силикагелем при градиентном элюировании с постепенным увеличением содержания полярного компонента метилэтилкетона в н-гептане. Первым из такой колонны при элюировании чистым н-гептаном выходит олигобутадиен, вторым при добавлении в н-гексан 5% метилэтилкетона выходит монооксиолигобутадиен и третьим, при содержании в н-гептане 15% метилэтилкетона, — диоксиолигобутадиен. Этот пример показывает, что методом адсорбционной хроматографии можно разделять синтетические олигомеры по типу и числу функциональных групп в их макромолекулах. [c.337]

    Проверка на отсутствие Оа описана выше (см. стр. 179). Примеси Ог, N2, Ма и СН4 в окиси углерода, получаемой описанными выше, методами, можно определять методом газо-адсорбционной хроматографии на активированных молекуляр--ньи ситах типа 4А и 5А, на мелкопорйстом силикагеле марок MGM и АСМ и др. и активированном угле марок КАД, АТ-2, АР-3, и др. (см. стр. 68 и 100). [c.247]

    Из теории жидкостной хроматографии уже известно, что форма элюируемого ника определяется изотермой распределения или — в случае адсорбционной хроматографии—изотермой адсорбции. Уилсон (1940) первым обсудил количественные зависимости. Он предполагал, что в колонке мгновенно устанавливается сорбционное равновесие между твердым телом и растворенным веществом, и применил материальный баланс для граничных слоев веществ, движущихся вдоль колонки. Было показано, что если рассматривать баланс растворенного вещества на узком участке хроматографической колонки, то его увеличение (или уменьшение) характеризуется разностью входящего и выходящего количеств. Дальнейшее развитие этих положений проведено Вейссом (1943), де Во (1943) и Глюкауфом (1947), и была показана возможность расчета формы хроматограммы но виду изотермы почти для всех типов изотерм в классификации БЭТ и, наоборот, возможность расчета изотерм по форме хроматограммы (Грегг и Сток, 1958). Если g — концентрация адсорбата [c.465]

    Наиболее эффективным и широко применяемым методом фракционирования сложных смесей липидов является хроматография. Главную роль при аналитическом фракционировании играет адсорбционная хроматография в тонком слое сорбента. Этот метод также применяется в препаративных целях, когда разделению подвергается небольшое количество липидов (50—300 мг). Если масса липидов превышает 300 мг, используют колоночную хроматографию, хотя по разделяющей способности и времени разделения этот метод часто уступает тонкослойной и газовой хроматографии. Однократного хроматографирования обычно бывает недостаточно для выделения индивидуальных веществ, в связи с этим полученные фракции подвергают препаративной тонкослойной хроматографии или колоночной хроматографии другого типа. При колоночрюй хроматографии липидов используют не только принцип адсорбции, но и принцип распределения между двумя несмеши-вающимися жидкостями, гель-фильтрации, ионного обмена. [c.69]

    Сведения о степени удерживания можно найти и в литературе, однако ценность этой информации ограничена. Так как колонки даже одной партии дают плохую воспроизводимость, литературные значения не всегда соответствуют истинному значению ir на данной колонке. Для адсорбционной хроматографии возможно, однако, предсказание ir на основании литературных данных. Другая трудность, связанная с использованием литературных значений Ir,—сложность их поиска в специальной литературе, хотя библиографические обзоры, публикуемые в Jornal of hromatography, имеют обновляемый указатель по типам веществ. [c.169]

    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    Вопреки изложенной точке зрения, Снайдер и Шунк [377] показали, что все закономерности на аминосиликагеле вполне могут быть описаны вытеснительной моделью Снайдера—Сочевиньского, разработанной для адсорбционной хроматографии на силикагеле и окиси алюминия. Развитие этой теории применительно к сорбентам рассматриваемого типа дано в работах [166—168, 170]. [c.162]

    Анализ полимеров может быть осуществлен с помощью су-перкритических жидкостей (смеси дихлорметана с СО2). При этом используют [8] адсорбционную хроматографию для разделения оли-гомеров и характеристики их распределения по типам функциональности, хроматографию с исключенным объемом для определения ММР. Чаще всего для исследования полимеров используют высокоэффективную жидкостную хроматографию (ВЭЖХ). [c.87]

    Приготовленную колонку используют так же, как это описано для адсорбционной хроматографии на колонках, за исключением того, что обычно не надо наблюдать за элюа-том. В зависимости от типа выбранной смолы и определяемого материала собирают определенный для конкретного случая объем элюата и титруют 1<ислотой или основанием, применяя подходящий индикатор. [c.102]

    Эта техника имеет преимущества перед распределительной и адсорбционной хроматографией, когда она используется для фракционирования больших количеств материала, растворенного в воде. Очевидно, что основное использование ионообменной хроматографии состоит в выделении и фракционировании полинуклеотидов и нуклеотидов, но величины рКа гетероциклических оснований таковы, что в интервале pH 4—10 некоторые нуклеозиды могут нести по меньшей мере частичный заряд и, следовательно, могут быть разделены этим методом. Для ионообменника используют два основных типа подложки либо полистирол, либо целлюлозу, и оба типа широко использовались для разделения нуклеозидов. В ероятно, наиболее широко используется метод. [c.73]


Смотреть страницы где упоминается термин Типы адсорбционной хроматографии: [c.104]    [c.104]    [c.18]    [c.217]    [c.311]    [c.73]   
Смотреть главы в:

Лабораторная техника органической химии -> Типы адсорбционной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Хроматография адсорбционная



© 2024 chem21.info Реклама на сайте