Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофорез латексов

    Электрофорез применяется в технике для обезвоживания и очистки глин, для удаления воды из нефти, для выделения каучука из природной эмульсии — латекса, а также в процессах дубления кожи и др. [c.533]

    Для изучения электрофореза удобно использовать гидрозоль гидроксида железа или синтетические латексы. [c.93]

    В некоторых случаях возникает необходимость разрушения эмульсии или предупреждения ее образования. Для этой цели применяют различные способы, основными из которых являются действие сильных минеральных кислот и их солей высаливание)-, действие температуры действие искусственного силового поля (седиментация) действие электрического поля (электрофорез) и действие ПАВ — деэмульгаторов. Например, полимер из латекса выделяют высаливанием или вымораживанием для обезвоживания нефти и нефтепродуктов воздействуют электрическим полем для этого, а также отделения сливок от молока используют центрифугирование сливочное масло из сметаны выделяют механическим взбиванием органические вещества при перегонке с водяным паром отделяют от воды высаливанием или действием деэмульгаторов, и т. д. [c.287]


    Электрофорез применяют также для покрытия металлических деталей каучуком путем отложения на их поверхности частиц каучука, содержащихся в латексах (водных дисперсиях каучука). В этом процессе отрицательно заряженные частицы латекса движутся к аноду, которым служит подлежащий покрытию предмет, и осаждаются на нем, образуя более или менее толстую пленку. В латекс предварительно можно вводить усиливающие каучук наполнители и вулканизирующие агенты. Благодаря этому на деталях получают резиновые покрытия, обладающие высоким качеством. [c.218]

    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Методом электрофореза можно характеризовать фракционный состав сложных природных белков, дать характеристику энзимов, вирусов, бактерий, форменных элементов крови, латексов и др. [c.327]

    Электрофорез находит в настоящее время широкое применение в технике, в процессах электроосаждения частиц из золей, суспензий и эмульсий. Таким способом получают ровные и прочные покрытия на металлах, погруженных в качестве электродов в суспензию— например, декоративные и антикоррозийные покрытия (из лакокрасочных композиций), электроизоляционные пленки (из латексов), пленки окислов, испускающих электроны, на вольфрамовых нитях радиоламп. Метод электроосаждения развивается в работах Лаврова с сотрудниками (ЛТИ) . Разрабатывается технология получения тиглей, чашек и другой химической и бытовой посуды. С этой целью суспензию каолина наливают в медную чашку, соответствующую по форме изготовляемому изделию и соединенную с анодом. Катод вводят в виде медной сетки, также повторяющей форму изделия. Суспензию непрерывно перемешивают для устранения оседания. Через несколько секунд после включения тока на аноде образуется прочный слой, легко отделяемый при нагревании от медной формы и образующий после обжига фарфоровое изделие. [c.216]


    Описанные выше явления получили название электро-кинетических явлений. Они играют большую роль в геологии, почвоведении, агротехнике, а также широко используются в технике электрофорез и электроосмос применяют для обезвоживания суспензий, осушки торфа и дерева, получения чистого каолина, осаждения латексов при покрытии каучуком деталей машин. [c.14]

    Опыты показали, что при разбавлении латексов вероналовым буфером с pH =7,7, одинаковым с pH исходных латексов, абсолютные значения -потенциала сначала возрастали, достигали 75 Ч- 85 мВ, а затем при содержании сухого остатка в латексах менее 0,02—0,1% падали. Одиако даже при. весьма больших разбавлениях, когда уже трудно вести наблюдения за электрофорезом, значения электрокинетического потенциала не были меньше —50 мВ. [c.382]

    При изучении влияния катионов различной валентности на электрокинетический потенциал латексных глобул было установлено, что для латексов с отрицательно заряженными частицами соблюдается правило Шульце—Гарди, которому подчиняются лиофобные коллоидные системы. На рис. XII. 8 приведены результаты электрофоретических исследований диализованного синтетического латекса, содержащего 1% сухого остатка. Последние точки на кривой, отмеченные стрелками, соответствуют предельной концентрации электролита, при которой еще можно провести электрофорез. [c.384]

    Электрокинетические явления находят разнообразное техническое применение. Электрофорез используется для получения чистого каолина из глинистой суспензии — под действием электрического поля частицы каолина осаждаются на одном из электродов. Подобным способом покрывают каучуком некоторые предметы. Отрицательно заряженные частицы латекса движутся к покрываемому предмету (который служит анодом) и осаждаются на нем. Электрофорез [c.86]

    Во время электрофореза фиксируют с помощью миллиамперметра силу тока в ячейке. Рекомендуется, чтобы сила тока не превышала 2 ма. Это предупреждает разогревание латекса. [c.76]

    Получение на металлических, бетонных и иных поверхностях защитных покрытий из синтетических и искусственных латексов и других каучуковых дисперсий является перспективным, но еще недостаточно распространенным методом гуммирования. Использование в латексах воды, как бы заменяющей растворитель в составах на основе жидких каучуков, создает большие удобства снижается стоимость антикоррозионных работ, устраняется пожарная опасность, улучшаются условия труда. Гуммирование латексами можно производить методом желатинирования, ионного отложения и электрофореза или применять одновременно различные методы [50]. Каждый из этих методов имеет и недостатки, ограничивающие применение покрытий из латексов, представляющих собой сложные коллоидно-химические системы с электрически заряженными глобулами каучука. В латексы удается вводить мелкодисперсную серу, технический углерод и другие твердые компоненты, которые, подобно каучуку, должны находиться в дисперсионной среде — воде — во взвешенном состоянии. Композиционные и технологические принципы получения воднодисперсионных красок изложены в книге [252]. [c.201]

    С помощью электрофореза в технике из сложных смесей выделяют взвешенные частицы, покрывают металл слоем латекса. Отрицательно заряженные частицы латекса в растворе движутся к аноду, которым служит покрываемый предмет. Электрофорез используется при исследовании почв, для получения чистого каолина и во многих других случаях. [c.415]

    В производстве резины, где требуется выделять полужидкие частицы каучука из латекса, латекс подвергают электрофорезу анодом служит движущееся металлическое полотно, на котором осаждаются частицы латекса и выносятся на этом полотне из ванны. При производстве прорезиненных тканей ленту ткани пропускают вблизи неподвижного анода частицы латекса передвигаясь к аноду, удерживаются на ткани. Для гуммирования металлических деталей аппаратов с антикоррозионными целями деталь погружают в латекс каучука, делая ее анодом. После образования на детали каучуковой пленки ее вулканизируют. Широко распространен электрофоретический метод нанесения тонких слоев изолирующего покрытия из суспензии алунда (плавленного корунда) на подогреватели электронных ламп или карбонатов щелочноземельных металлов на катоды этих ламп. Комбинацией электролиза и электрофореза достигается довольно высокая степень очистки воды. Очищаемая вода проходит последовательно ряд ячеек, каждая из которых разделена двумя пористыми диафрагмами на три пространства анодное, среднее и катодное. Под действием электролиза ионы примесей электролитов свободно проходят сквозь поры диафрагмы, концентрируясь в электродных пространствах, откуда вымываются промывными водами. Твердые коллоидные частицы примесей при своем передвижении к электроду удерживаются поверхностью диафрагм. [c.33]

    Наложение электрического тока на защищаемое металлическое изделие, погруженное в латекс, причем на металле отлагается каучук и сопутствующие ему добавки (метод электрофореза). [c.62]


    Третий способ основан на известном явлении так называемого электроосаждения (электрофореза) каучука из латекса под воздействием постоянного тока, поступающего из внешнего источника. Металлическое изделие, подлежащее гуммированию, погружают в латексную ванну и включают в электрическую цепь в качестве анода. При этом каучуковые частицы латекса, а также диспергированная сера и другие ингредиенты осаждаются на металле в виде гомогенного покрытия, которое затем сушат и вулканизуют. [c.63]

    При условии применения для этой цели положительно заряженных кислых латексов, которые еще почти не употребляются в технике, значительная часть перечисленных недостатков присущих способу электрофореза, может отпасть. [c.63]

    Кроме описанного в тексте применения для анализа смесей коллоидов, электрокинетические явления получили ряд других практических применений. Электроосмос применяется в производственных масштабах для очистки воды от электролитов и других примесей. Вода, получающаяся при этом, не отличается от дестиллированной [И. И. Жуков, Успехи химии, 12, -265 (1943) . Другая техническая задача, которая может быть решена при помощи электрокинетических процессов, это обезвоживание различных коллоидных систем, которые другими способами обезвоживаются с большим трудом. Так, посредством электрофореза латекса осаждают сырой каучук на ткани для выделения каучука или для получения прорезиненной ткани. При дублении кожи коллоидный дубитель с помощью электрофореза вводится в поры кожи. Применяют электрофорез и для очистки разных коллоидов (например, клеев) от примесей электролитов. Этот способ применяется в больших масштабах также в химической и фармацевтической промышленности для очистки каолина от примесей [В. Г. Хомяков, В. П. Машовец, Л. Л. Кузьмин, Технология электрохимических производств, Госхимиздат, М.— Л 1949, стр. 170—183]. [c.720]

    Представляет большой интерес возможность получения резиновых покрытий из латексов путем. электрофореза. Способ основан на э.мектроосаждении частиц каучука при пропускании через ванну с латексом постоянного тока. Благодаря отрицательному заряду частицы каучука, а также диспергированная сера и другие нн1 )сдненты осаждаются и виде гомогенного слоя иа изделии, которое включено в. электрическую цепь в качестве анода. [c.445]

    В колбы /—4, соответствующие номерам электрофоретических трубок, наливают по 40 мл латекса. В колбу 2 вводят 1 мл раствора Na I, в колбу 3 — 2 мл,в колбу 4 — 4 мл и доводят общий объем раствора водой во всех колбах до 50 мл. В колбу / электролит пе вводят (определяют исходное значение -потенциала чатекса). Заполняют приготовленными растворами электрофоретические трубки и проводят электрофорез, как описано выше, в течение 60 мин. [c.95]

    Явления электрофореза и электроосмоса широко используются в технике и производстве. Электрофорез применяется в фарфоровом производстве для выделения из суспензий глин чистого каолина. Наиболее мелкие отрицательно заряженные частицы каолина после тщательного взмучивания в воде осаждаются на вращающемся свинцовом барабане, заряженном положительно. Посторонние примеси в виде положительно заряженных частиц РеаОз, а также более крупные частицы каолина уносятся проточной водой. С помощью электрофореза различные изделия покрывают тонким слоем каучука из латекса. При этом отрицательно заряженные частицы латекса движутся в электрическом поле к аноду (покрываемый предмет) и осаждаются па нем. За последние годы метод электрофореза нащел широкое применение в получении оксикатодов в радиолампах. [c.312]

    ЭЛЕКТРОФОРЕЗ (электро- и греч. phoresis — перемещение) — передвижение заряженр[ых чаеаиц (коллоидных) в жидкой или. газообразно среде под действием внешнего электрического поля. Э. применяют для обезвоживания торфа, красок очистки глины и каолина для осаждения каучука из латекса, дымов и туманов для изучення растворов и др. [c.291]

    Следует указать на ряд интересных и важных теоретических исследований, проведенных недавно Б. В. Дерягиным и С. С. Ду-хиным по изучению электрофореза и потенциала седиментации . Эти авторы привлекают внимание к неравновесным электропо-верхностным силам, возникающим вследствие деформации двойного электрического слоя при движении взвешенных частиц. Деформированный двойной слой продуцирует электрическое поле, сфера действия которого часто на несколько порядков превышает сферу действия недеформированного двойного слоя в тех же условиях. С. С. Духин указывает на значение возникающих потоков диффузии, проводит их учет для явления седиментационного потенциала при движении твердых частиц и жидких капель в жидкой среде. Движение взвешенных частиц за счет электрического поля, образующегося при диффузии электролита, названо С. С. Духиным диффузиофорезом. Наличие этого процесса было демонстрировано им на примере осаждения глобул латекса. [c.143]

    Электрофорез применяется в различных производствах, например в обезвоживании нефти, в подготовке суспензий и керамических масс для фарфорово-фаянсовых изделий, в изготовлении активированных катодов для радиоламп и изолированных нагревательных спиралей, в получении резиновых изделий из латексоБ, Частицы каучука в латексе заряжены отрицательно и во время электрофореза движутся к аноду (металлическая форма), отлагаясь на нем в виде резиновой пленки. Электрофорез применяется также (наряду с ионофорезом) в лечебной практике для введения в организм различных лекарственных веществ. Используя электроосмос, осушают торф, очищают от примесей воду, лечебные сыворотки, желатин, дубят кожу, обезвоживают древесину и т. п. [c.79]

    Электрофорез находит в настоящее время широкое применение в технике, в процессах электроосаждения частиц из золей, суспензий и эмульсий. Таким способом получают ровные и прочные покрытия на металлах, погруженных в качестве электродов в суспензию, — например декоративные и антикоррозийные покрытия (из лакокрасочных композиций) электроизоляционные лленки (из латексов) пленки оксидов, способных испускать электроны, на вольфрамовых нитях радиоламп. Метод электроосаждения был развит в работах Лаврова с сотрудниками , а также в Институте коллоидной химии и химии воды (Киев) [17]. Разрабатывается технология получения тиглей, чашек и другой химической и бытовой посуды. [c.220]

    Электрофорез (от электро и греч. phoresus — перемещение) — передвижение заряженных частиц (коллоидных) в жидкой нли газообразной среде под действие.м внешнего электрического поля. Э. применяют для обезвоживания торфа, красок, очистки глины и каолина для химической промышленности, для осаждения кау= чука и латекса, дымов и туманов, для изучения состава растворов и т. д. Электрохимические методы анализа — большинство их основано на электролизе. Сюда относят электрогравиметрический ана.тиз (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулопометрию и др. Кроме того, к Э, м. а. относят методы, основанные на измерении электропроводности (кондуктометр и я) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, коидуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование), Электрохимический ряд активности (напряжения) металлов фяд активности металлов) показывает их сравнительную активность в реакциях окисления-восста новления (слева направо восстановительная активность уменьшается)  [c.157]

    Устойчивость латекса, сильно зависящая от концентрации водородных ионов, очень велика при высоких значениях pH, очень мала в области pH от 6 до 3 (изоэлектрическая точка частичек соответствует приблизительно pH от 4,5 до 4,8) и снова возрастает при дальнейшем понижении pH. При низких концентрациях водородных ионов (высокие значения pH) электрофорез свидетельствует о том, что частички каучука отрицательно заряжены они движутся в электрическом поле к положительному полюсу по другую сторону от изоэлектрической точки заряд обратный. Электролиты коагулируют суспензию латекса, действуя на нее так же, как на суспензоиды. Осаждающее действие солей на свежий латекс с pH около 7 определяется главным образом валентностью катиона. Так, коагулирующее действие на латекс, разбавленный до концентрации каучука в 1% или ниже, оказывает А12(804)з, при содержании его в количестве 0,0006 эквивалента на литр. Мд304 требуется в 40 раз бопее высокой концентрации, а хлористого щелочного металла в 1000 раз больше. Эти различия в действии катионов подтверждают предположение о природе заряда частичек (правило Шульце-Гарди, стр. 136). Однако, хотя концентрированный латекс требует для коагуляции гораздо больше сернокислого алюминия, чем разбавленный, обычных двухвалентных катионов требуется немного больше или столько же. [c.399]

    Макроэлектрофорез латекса в приборе Рабиновича и Фодиман. Макроэлектрофоретические измерения производят в приборах различных конструкций. Ниже описано применение видоизмененного прибора Рабиновича и Фодиман, приспособленного для латексов с плотностью полимера, меньшей плотности воды (например, латексов СКС, содержащих меньше 50% стирола в полимере). Общий вид электрофоретической ячейки представлен на рис. 34, схема установки для электрофореза — на рис. 35. [c.75]

    Выбор П. л. м. определяется также агрегатным состоянием иленкообразующего (р-ры, латексы, расплавы). Так, в эмульсионных красках следует применять П. л. м., но содержащие растворимых солей, способных разрушать шульсию в красках для напе-сения покрыти методом электрофореза недопустимо применстпте П. л. м., к-рые реагируют с водорастворимыми по.тимерами, содержащими аммониевьсе группы (РЬО, гиО, свинцовый сурик, сернистые соединения, железная лазурь п др.). [c.301]

    Несмотря на то что размеры частиц велики, дисперсия устойчива, так как частицы покрыты слоем белковых молекул, играющих роль защитного коллоида. Благодаря этому частицы имеют отрицательный электрический заряд и оседают при электрофорезе на аноде. Форма частш приближается к шарообразной это объясняет низкую вязкость латекса и то, что оп приблизительно подчиняется закону Эйнштейна (том I). pH латекса лежит в пределах 6,4—6,8 при добавлении кислоты достигается изоэлектрическая точка белка (рН=4,5—4,8), причем каучук, необратимо оседает. [c.936]

    Натуральный каучук добывают из млечного сока (латекса) каучуконосных растений. Каучук находится в млечном соко в виде эмульсии. В латексе каучук заряжается отрицательно и при электрофорезе осаждается на аноде. Электрофоретическое выделение сырого каучука из латекса применяют в практике резинового производства. Однако присутствую1цие в ла тексе элек-тpoJПiты затрудняют этот процесс, главным образом, потому, что наряду с электрофорезом идет и электролиз. Вследствие этого на аноде вьщеляются газы, которые затрудняют равномерное осаждение каучука и, кроме того, делают осадок рыхлым. Во избежание этих осложнений прибегают к ряду приемов, например ведут электрофорез при малом анодном потенциале, что затрудняет разряд ионов, применяют в качестве анода растворимые металлы, добавляют в ванну восстановители, наконец окружают анод непроводящей диафрагмой из пергамента или асбеста, па которой и осаждается каучук. [c.174]

    Хлорспреновый каучук можно перерабатывать совместно с пластификаторами, смолами и наполнителями, например сажей, ZnO, СаСОз и т. д. Хлоропреновые латексы пригодны непосредственно для пропитки. Кроме того, можно, пользуясь электрофорезом, применять их для покрытий 2. [c.147]

    С целью эксперимента в различные типы синтетических латексов вводились, помимо загустителей и наполнителей, бензоат и нитрит натрия [256]. Эти ингибиторы гарантировали отсутствие коррозии стали как в процессе формирования пленки, так и при длительной эксплуатации покрытия. В ходе исследования были опробованы способы получения покрытий ионным отложением и электрофорезом, которые применимы для низковязких и низкоконцентрированных латексов. Вместо традиционного коагулянта — раствора хлорида кальция, являющегося коррозионноагрессивным веществом, для положительно заряженного латекса СКН-40-1ГП и сливкоотделенного СКД-1 (оба — латексы карбоксилатные) — с успехом был использован бензоат натрия. Благодаря добавке оксида цинка бутадиеновый карбоксилатный латекс дает покрытия, вулканизующиеся за 5 суток без нагревания. Они защищают углеродистую сталь при нормальных условиях 8 месяцев, а при 60°С —6 месяцев. [c.202]

    Первые работы по электрофоретическому осаждению относятся к 1919 г. и посвящены нанесению каучука из латексов. При электрофорезе щелочных водных растворов каучука частицы последнего оседали на аноде. Таким образом в промышленности получали резиновые изделия (шланги, перчатки). Затем стали осаждать целлюлозу и ее производные (шел.чак, фенолформаль-дегидную смолу, высокомолекулярные непредельные масла, воски и другие вещества) [86]. Несколько позднее из органических сред, позволяющих избавиться от анодного выделения кислорода и других осложнений, связанных с выделением на электродах побочных продуктов электролиза, начали проводить осаждение полистирола, полиметилметакрилата, полибутилметакрилата, нитроцеллюлозы, поливинилхлоридных пластиков, мочевиноформ-альдегидной смолы [86], полиакрилонитрила, капрона [43], нейлона, фторопласта [48], полиэтилена [87]. В настоящее время разработан целый ряд композиций, позволяющих получить на металлах полимерные покрытия с определенными свойствами [70, 80, 88-113]. [c.18]

    Электрофорез прпменяют для отделения взвешенных в жпдкости мелких частиц, не поддающихся фильтро-канпю пли отжиманию, для обезвоживания торфа, очистки глины и каолина для химич. пром-сти, для обезвоживания красок, осаждения каучука из латекса, разделения масляных эмульсий и т. д. Электрофорез пспользуют также для осаждения дымов и туманов, представляющих собой системы, в к-рых мельчайшие твердые плп жпдкие частицы распределены в газовой фазе. [c.470]

    С помощью электрофореза проводят покрытие различных изделий тонким слоем каучука из латекса. В этом случае отрицательно заряженные частицы латекса движутся в электрическом поле к аноду (покрываемый предмет) и осаждаются на нем. За последние годы метод электрофореза нашел широкое применение в получении оксикатодов в радиолампах. [c.396]


Смотреть страницы где упоминается термин Электрофорез латексов: [c.72]    [c.327]    [c.104]    [c.80]    [c.104]    [c.340]    [c.533]   
Смотреть главы в:

Практикум по коллоидной химии -> Электрофорез латексов




ПОИСК





Смотрите так же термины и статьи:

Латексы

Электрофорез



© 2025 chem21.info Реклама на сайте