Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучуки Эластомеры покрытия

    Производство эластичных пенополиуретанов, обладающих большой прочностью при малой плотности и намного превосходящих в этом отношении пеноматериалы на основе каучука, составляло в 1960 г. приблизительно 45,5 тыс. т . Снижение стоимости сырья способствовало использованию полиуретанов в других областях (эластомеры, покрытия, клеи). [c.16]

    Теоретически можно себе представить, что свойства, сообщаемые битумным материалам эластомерами, — пониженная термочувствительность, эластичность, прочность и повышенное сопротивление старению — должны улучшить эксплуатационные свойства большинства готовых изделий. Поэтому неудивительно, что были проведены обширные исследования этих свойств и в особенности эксплуатационных качеств дорожных покрытий. В настоящее время в эксплуатации находятся несколько тысяч километров шоссейных дорог, в которых каучук использован для модификации либо покровного защитного слоя, либо в качестве асфальтобетона. Особое внимание уделено асфальтобетону в США и за границей после второй мировой войны. Однако начиная с 1954 г., возрастает интерес и к защитным покрытиям, модифицированным каучуками. [c.236]


    При использовании жидкого битума, модифицированного каучуком, получаемая после испарения разжижителя пленка обладает высокой когезионной прочностью (рис. 7.15). Адгезионная прочность модифицированного битума видна на рис. 7.16. Длинный ус битума остается прикрепленным к щебню, выталкиваемому из дорожного покрытия, даже после ряда лет эксплуатации. Куски щебня, брошенные на свеженанесенный слой битума НС-З или ЯС-4, обычно подскакивают несколько раз, а брошенные на свежий слой битума, модифицированного эластомером, подскакивают только один или два раза и затем прилипают. [c.237]

    В качестве пленкообразователей для лакокрасочных материалов обычно используют полимеры, находящиеся в стеклообразном состоянии, т. е. с температурой стеклования 50 С и выше. Полимеры с низкой температурой стеклования (ниже 0°С), при нормальной температуре пребывающие в высокоэластическом состоянии, называются эластомерами. Это чаще всего каучуки, которые в лакокрасочных материалах используются реже. Итак, физическое состояние полимера, его температура стеклования оказывает существенное влияние на растворение полимера и формирование покрытия из раствора. [c.185]

    Для изготовления автодеталей неуклонно расширяется применение силоксанового каучука. В настоящее время масса изделий из него в автомашине достигает 1,14 кг (в 70-е годы около 0,3 кг). Такой рост объясняется высокой тепло-, масло-и химической стойкостью деталей из силоксанового каучука, а также высокой прочностью в температурном интервале от—100 до 4-315°С. Из силоксанового каучука изготовляют кольца круглого сечения, различные уплотнения и прокладки, диафрагмы тормозных цилиндров и топливных насосов, амортизационные подвески, изоляцию проводов и др. В последнее время его используют в производстве рукавов охлаждающей системы, клапанов карбюратора, колпачков свечей зажигания (в большинстве моделей американских автомобилей). Силоксановые эластомеры являются также наилучшими материалами для тонкопленочных покрытий, обеспечивающих защиту электронных устройств. Так, фирма Рог(1 в течение многих лет использует силоксановые конформные покрытия на некоторых наиболее ответственных электронных схемах автомобиля. [c.97]

    Исследования массопереноса газов, паров, жидкостей и других веществ через каучуки и резины часто являются важной технической задачей. Они необходимы для разработки уплотнительных материалов, диафрагм, покрытий, а также материалов для контейнеров, оболочек аэростатов, газгольдеров, баков, лодок, спасательного имущества, шлангов, камер автошин и многих других надувных изделий из резины или прорезиненных тканей. Такие исследования имеют и весьма существенное научное значение. В частности, изучение диффузии и растворимости позволяет судить о структуре эластомеров и характере теплового движения макромолекул. Перенос низкомолекулярных веществ в полимерах играет основную роль при изучении многих процессов, протекающих при изготовлении и эксплуатации резиновых изделий, например при вулканизации и окислении резин, при действии на резины агрессивных паров, жидкостей и др. Вопросы массопереноса в каучуках и резинах рассмотрены в ряде монографий и обзоров [1-5]. [c.344]


    Клеящие свойства натурального каучука были обнаружены Чарльзом Макинтошем в 1823 г., когда он установил, что лигроин является превосходным растворителем для каучука, раствор которого может быть применен для изготовления водонепроницаемой ткани и покрытий, Каучуковые латексные эмульсии начали использоваться [39] еще в 1850 г, С 1939 г, большее внимание было уделено развитию синтетических эластомеров, таких как сополимеры бутадиена со стиролом и акрилонитрилом [40] и др. Значительное [c.230]

    Прозрачные уретановые эластомеры на основе литьевых каучуков СКУ-6 и СКУ-9 широко применяются для исследования напряженного состояния резиновых деталей и покрытий . Кристаллизация может существенно ограничить их использование в качестве оптически активного материала. Для уретановых каучуков характерны небольшие значения параметра В, еще более низкие, чем для хлоропреновых. Относительно небольшое ускоряющее действие напряжения на кристаллизацию (например, для каучука СКУ-8) позволяет при комнатной температуре разделить во времени процессы деформирования и кристаллизации вплоть до сравнительно высоких значений деформации. [c.166]

    Если в первый слой покрытия, контактирующего с грунтовой и клеевой подложкой, ввести отвердителя меньше указанного в формуле, этот слой получится более жестким, чем надо, что неблагоприятно скажется на адгезии покрытия в целом. При нарушении предложенного соотношения компонентов получается либо слишком мягкий каучук с плохими эластическими свойствами, либо жесткий продукт, который правильнее относить к пластическим массам, а не к эластомерам. На практике ошибки в расчетах встречаются редко. Чаще наблюдаются неудачи, вызванные тем, что потребитель пользовался паспортными данными, в то время как у форполимера после длительного хранения содержание групп —N00 уменьшилось, а анализ не был произведен. [c.146]

    Эластомерные полиуретановые покрытия обладают износостойкостью, недостижимой для покрытий на основе других каучуков. Это ценное качество заметно уже при контактном трении о твердый истирающий материал, например при определении истираемости по ГОСТ 426—66. Особенно же отчетливо это преимущество проявляется при эрозионном износе, когда песок, пыль или другое твердое вещество находится во взвешенном состоянии в газовом или жидкостном потоке. В таких условиях подвижная среда, окружающая частички абразива, снимает тепло, образующееся в эластомере при трении и соударении с этими частицами. Благодаря этому существенно облегчаются условия работы эластомерного покрытия и снижается опасность термоокислительной деструкции эластомера. Важно отметить, что упруго-эластичные свойства полиуретановых покрытий, от которых зависит износостойкость, не могут проявиться при слишком малой толщине покрытия на жестком конструкционном материале. Поэтому для эрозионной защиты изделий применяют эластомерные полиуретановые покрытия толщиной не менее 0,5 мм. На металлической подложке, способствующей отводу тепла, толщина монолитных полиуретановых покрытий, эксплуатирующихся в условиях интенсивного эрозионного воздействия, обычно лежит в пределах 1,5—2 мм. [c.151]

    Для защитных покрытий используется обширный ассортимент-резин на основе натурального и синтетических каучуков, полиизобутилен, сульфохлорированный полиэтилен и другие эластомеры. Методы их нанесения различны и выбираются в зависимости от конструкции защищаемого изделия и условий эксплуатации [c.39]

    Изменение массы покрытий из эластомеров на основе каучуков в агрессивных средах [c.129]

    На стойкость покрытий из эластомеров к агрессивной среде большое влияние оказывает энергия химических связей. Чем выше эта энергия, тем эластомер более стоек так, каучуки на основе фторированных углеводородов и кремнийорганических соединений по своей химической инертности превосходят все известные в настоящее время каучуки [c.181]

    Применение МАН в качестве сомономера улучшает технические свойства пластмасс, эластомеров, покрытий, целлюлозы, акриловых волокон и других полимерных материалов. На его основе можно получать морозостойкие нитрильные каучуки, модифицированные органические стекла, присадки к маслам, со-полимерные материалы, другие ценные органические соединения метакриловой [107, с. 146], кротоновой и метилянтарной [268] кислот и их производных, аминопроизводных метакрилонитрила [269] и т. д. получение этих продуктов другими способами затруднено. [c.342]

    Адамантан-1,3-днизоцианат, 1,3-бис (метиленизоцианат) адамантан получают с выходом 90%. При взаимодействии адамантансодержащих диизоцианатов с полиэфирами получены каучуки, отличающиеся высокой. прочностью, термоустойчивостью до 220— 240 °С, стойкостью к УФ-облучению, гидролитическому воздействию и к действию растворителей. Адамантансодержащие полимеры пригодны для производства специальных эластомеров, искусственных кож, пенопластов и синтетических полимерных покрытий. [c.331]


    Рекс и Пек [20] показали, что натуральный каучук оказывает заметное влияние на поведение асфальтобетона, но они сомневаются в целесообразности его применения в дорожном покрытии. Эти ученые принши к заключению, что смешивать предварительно порошкообразный каучук с битумом лучше, чем вводить его непосредственно в асфальтобетонную смесь. При прямом введении порошка каучука способность асфальтобетона уплотняться в процессе укладки на дороге ухудшается. Если же каучук ввести в битум заранее, то дорожная смесь получается более стабильной и лучше уплотняется, чем контрольная смесь без каучука. Однако Рекс и Пек, установив, что битумное покрытие, модифицированное каучуком, меньше реагирует на изменение температуры, не показали, стало ли покрытие под влиянием эластомера более пластичным при низких температурах и менее пластичным при высоких. [c.228]

    Каменноугольный деготь в дорожных покрытиях. Смеси камен ноугольного дегтя с каучуком используют в дорожных покрытиях, стойких к действию реактивного топлива, и в смесях для герметизации стыков в цементобетоне. Благодаря введению эластомера повышается сопротивление изменению физических свойств от температуры. Деготь в большей степени, чем битум, хрупок при низкой температуре и излишне мягок при высокой температуре. Нит-рильные каучуки в виде крошки или гранул чаш,е всего используют во взлетно-посадочных полосах и площадках для стоянки самолетов, где происходит утечка авиационного топлива. [c.239]

    Этот специальный класс эластомеров в возрастающих количествах применяется в различных областях в производстве твердых материалов, литьевых смол и пористых или губчатых резиновых изделий. Универсальность эластомеров этого типа можно иллюстрировать разработкой материала ликра (фирма Дюпон ) — эластичной ткани, вырабатываемой па основе полиуретана [71]. Уретановые покрытия обладают рядом ценных свойств [54]. К полиуретанам в широком понимании этого термина можно отнести все полимеры, образующиеся при взаимодействии полиизоцианатов с соединениями, содержащими две или несколько гидроксильных групп в молекуле (чаще всего низкомолекулярпыми простыми или сложными полиэфирами). Получаемые таким путем полимеры образуют широкую гамму продуктов — от гибких, упругих каучуков до твердых, жестких пластмасс. Ненасыщенный полиэфир этого типа использовался [96] при сравнительном исследовании структурирования каучуков с применением диизоциапата или обычной системы сера — ускоритель вулканизации. [c.208]

    Достоинством фенолоформальдегидных смол является их высокая твердость, стойкость к воде, нефтепродуктам и различным химически агрессивным средам. Однако в качестве лакокрасочных материалов они находят ограниченное применение из-за хрупкости получаемой пленки, слабой адгезии и неустойчивости к механическим воздействиям, которая объясняется высокими внутренними напряжениями в покрытии. Для устранения этого недостатка вводят пластификаторы. С целью повышения эластичности покрытий на основе фенолоформальдегидных смол успешно применяются эластомер-ы, в частности карб-оксилатный бутадиен-нитрильный каучук СКН-26-125. При его введении достигается лучшая адгезия и минимальное водопо-глощение. [c.73]

    Угли, измельченные до 1—5 мкм, используют для получения угле-наполненных резиновых смесей на основе таких эластомеров, как натуральные, бутадиен-стирольные, бутилкаучук, полибутадиен и др. Угольный порошок может заменить дефицитные технические сажи. Из натуральных и синтетических каучуков и термообработанных углей получают морозостойкие диэлектрики-эбониты. Угленаполненные пластмассы могут широко использоваться в гражданском строительстве, в качестве различных покрытий, изоляционных и кровельных материалов. Углепластики являются также конструкционным материалом. [c.223]

    ХСПЭ хорошо совмещается со многими синтетическими смолами, термопластами и эластомерами [12, 43], придавая покрытиям на их основе эластичность и повышенную прочность к удару. В свою очередь смолы повышают твердость покрытий из ХСПЭ и улучшают адгезию, увеличивают жесткость системы. Для увеличения твердости покрытий на основе ХСПЭ применяют меламино- и мочевиноформальдегидные смолы [42], высокостирольные бута-диен-стирольные сополимеры [44]. Введение эпоксидной смолы в композиции с ХСПЭ ускоряет сушку и улучшает адгезию покрытий, создает стабильную надмолекулярную структуру [45]. Высокомолекулярные эпоксидные смолы и фенокси-смолы способствуют устранению липкости пленок [44]. Непредельные полиэфирные смолы, тощие алкиды, циклогексаноновые и кумарон-инденовые смолы увеличивают твердость и повышают экономичность процесса получения покрытий [44]. ХСПЭ хорошо совмещается также с ПЭ [46], ПВХ, ХПВХ, ХПЭ и хлорированным каучуком [47]. [c.173]

    При рассмотрении реплик с поверхности разрушения резин, содержащих сажу ДГ-100, частицы сажи не были обнаружены. Однако следует учесть, что и при адгезионном разрушении систем частицы сажи могут не извлекаться, если адгезия материала реплики к ним меньше, чем их адгезия к каучуку. Для того чтобы определить истинный характер разрушения в этом случае, необходимо снизить адгезию каучука к частицам данного вида сажи. При когезионном разрушении образца снижение адгезии каучука к наполнителю не привело бы к извлечению частиц наполнителя репликой, так как частицы оставались бы покрытыми пленкой эластомера. С целью уменьшения адгезии каучука к частицам сажи образцы резин после раздира перед нанесе-нцем реплик трениро1зали путем двад- [c.346]

    Полимерами со сходными свойствами являются полидиэтил-силоксаны. В качестве боковых групп можно вводить винильные группы, что позволяет сшивать макромолекулы. По своим свойствам эти полимеры — типичные эластомеры или каучуки. Замена небольшой части метильных боковых групп на фенильные сохраняет у них свойства эластомеров, а переход к цепям с преимущественно фенильными боковыми радикалами приводит к образованию твердых термопластичных смол, применяемых в виде пресс-порошков или растворов для различных покрытий. [c.32]

    В США производят дешевый электропроводящий силоксановый эластомер для изготовления деталей электронного и радиотехнического оборудования. Он представляет собой композиционный материал, который состоит из частиц алюминиевого-наполнителя, равномерно диспергированного в силоксановом-каучуке. Частицы алюминия, покрытые слоем серебра, обеспечивают высокую теплостойкость (200 °С) и сопротивление воздействию коррозии в жестких условиях. По эффективности защитного действия новый материал (с меньшим содержанием-серебра по сравнению с другими электропроводящими полиси-локсанами) значительно превосходит эластомеры, содержащие стеклянный наполнитель с серебряным покрытием. [c.125]

    Основной областью потребления хлоропренового каучука является производство различных масло-, озоно- и теплостойких резино-технических изделий. В 1969 г. в США для этой цели было израсходовано 60% неопрена, причем из них 18% приходилось на резино-технические изделия для автомобильной цромышленности. В электротехнической промышленности хлоропреновый каучук применяют в качестве защитных оболочек проводов и кабелей. Неопрен придает покрытию износостойкость и негорю честь, стойкость к теплу, химикатам и маслу, а. также играет важную роль в получении различных клеящих композиций. 0 н составляет 80% всех эластомеров, используемых в производстве резиновых клеев. В производстве шин попользуется всего -3—4% неопрена. Он применяется в смесях для боковин радиальных шин, чтобы повысить стойкость к трещинообразованию, а также в смесях для белых боко1вин шин (табл. 18) II, 8, 54, 62]. [c.480]

    Среди полимеров, используемых в производстве защитно-герметизирующих материалов, каучуки занимают особое место вследствие присущей только им высокой эластичности. Благодаря этому качеству, во многих случаях сочетающемуся с хорошей стойкостью к коррозионноагрессивным агентам, каучуки, или, как их еще называют, эластомеры, во все возрастающих размерах используются для указанной цели. Специфические свойства синтетических каучуков, подробно описанные в монографии [1], наиболее эффективно реализуются в защитных резиновых обкладках или эластичных покрытиях, способных противостоять не только химическому, но и эрозионному разрушению, а также выдерживать знакопеременные деформации и резкие колебания температур. Именно поэтому гуммирование стало наиболее надежным и распространенным методом защиты химической аппаратуры и другого оборудования, эксплуатируемого в коррозионноопасных условиях [2]. Заметим, что этим не ограничивается применение СК в борьбе с коррозией, как это следует из схемы I. [c.5]

    При гуммировании типовой химической аппаратуры листовой резиной с целью защиты от коррозии жидкими и газовыми средами обычно ограничиваются толщиной покрытия 4—6 мм. Для защиты от интенсивного абразивного и гидроабразивного износа импеллеров и статоров флотационных машин, рабочих колес Песковых насосов, конвейерных роликов и т. п. оборудования такая толщина недостаточна. Покрытия указанного назначения толщиной 10—15 см получают путем многократного наложения на подготовленное изделие заготовок, выкроенных из утолщенных каландрованных листов сырой резины. Оклеенное резиной изделие закладывают в нагретую специальную форму, покрытую силиконовым или другим антиадгезионным составом, прессуют фигурным пуансоном и проводят термическую вулканизацию. Для гуммирования вышеуказанного оборудования применяют стандартные резины 2566, 6252, но иногда и более жесткие смеси на основе каучука СКД и композиций этого износостойкого каучука с другими каучуками. Технология гуммирования деталей машин описана в монографии [11]. Гуммирование методом формования сырой резиновой массы с последующей вулканизацией широко применяется при получении резинометаллических деталей, облицованных резинами на основе фторкау-чуков, кремнийорганических каучуков и других эластомеров специального назначения. В более редких случаях гуммирование осуществляется с помощью заранее отформованных и провулка-низованных вкладышей, которые тем или иным способом закрепляют на поверхности защищаемого изделия. Примером крупногабаритных изделий, гуммированных таким способом, могут являться шаровые мельницы из мелкогабаритных изделий можно указать на диафрагмовые чугунные вентили с кислотостойкими вкладышами. [c.11]

    Каучуковые водоразбавляемые композиции антикоррозионного назначения периодически пополняются материалами на основе новых синтетических и искусственных латексов. Однако известные гуммировочные латексные составы продолжают пока еще оставаться неконкурентоспособными по сравнению с жидкими отверждающимися составами на олигомерной основе вследствие невысокой прочности латексных покрытий и повышенной влагопроницаемости, обусловленной присутствием в защитной пленке эмульгаторов и других водорастворимых примесей. Опробованные ранее применительно к высокомолекулярным тиоколам методы гуммирования напылением порошкообразных эластомеров широкого промышленного значения не получили и теперь не оцениваются как перспективные. Каучуки иногда используют лишь в качестве пластифицирующих добавок к напыляемым порошковым смесям на основе других высокомолекулярных полимеров [14]. [c.12]

    Из зарубежных полихлоропреновых композиций в антикоррозионной технике раньше всего стали применять составы на основе жидкого неопрена КМК, выпускаемого фирмой Дюпон . Неопрен КНК представляет собой регулированный серой эластомер. Его получают эмульсионной полимеризацией хлоропрена, модифицированного серой и стабилизированного тетраме-тилтиурамдисульфидом. Этот тип хлоропренового каучука отличается от многих других, выпускаемых в США, тем, что легче подвергается механохимической деструкции, образуя низкомолекулярные, достаточно стабильные, хорошо растворимые полимеры. На практике для защиты от коррозии обычно применяют 65—70%-ные растворы смесей на основе деструктированного неопрена КМК в ксилоле или другом органическом растворителе. Вулканизация покрытий при большом содержании ускорителей может протекать даже при комнатной температуре. В неопреновые составы, поставляемые в двух упаковках, перед употреблением вводят жидкий ускоритель 833, являющийся продуктом конденсации бутиламина и масляного альдегида. Это соединение действует особенно эффективно в сочетании с диоксидом свинца, который является лучшим вулканизующим агентом по сравнению с оксидами цинка и магния, дающими вулканизаты с более низкой водостойкостью. В двухупаковочных составах жидкая неопреновая композиция сохраняет стабильность по крайней мере в течение года. После введения ускорителя 833 жизнеспособность рабочего гуммировочного состава ограничивается 24 ч. [c.117]

    Кристаллизация и кристаллические структуры. 9. Электрические и магнитные явления. 10. Спектры и некоторые другие оптические свойства. 11. Радиационная химия и фотохимия, фотографические процессы. 12. Ядерные явления. 13. Технология ядерных превращений. 14. Неорганическая химия и реакции. 15. Электрохимия. 16. Аппаратура, оборудование заводов. 17. Промышленные неорганические продукты. 18. Экстрактивная металлургия. 19. Черные металлы и сплавы. 20. Цветные металлы и сплавы. 21. Керамика. 22. Цемент и бетон. 23. Сточные воды и отбросы. 24. Вода. 25. Минералогическая и геологическая химия. 26. Уголь и продукты переработки угля. 27. Нефть, нефтепродукты и родственные соединения. 28. Детонирующие и взрывчатые вещества. 29. Душистые вещества. 30. Фармацевтические препараты. 31. Общая органическая химия. 32. Физическая органическая химия. 33. Алифатические соединения. 34. Алициклические соединения. 35. Неконденсированные ароматические системы. 36. Конденсированные ароматические системы. 37. Гетероциклические соединения (с одним гетероатомом). 38. Гетероциклические соединения (более чем с одним гетероатомом). 39. Элементоорганические соединения. 40. Терпены. 41. Алкалоиды. 42. Стероиды. 43. Углеводы. 44. Аминокислоты, пептиды, белки. 45. Синтетические высокомолекулярные соединения. 46. Краски, флуоресцентные отбеливающие агенты, фотосенсибилизаторы. 47. Текстиль. 48. Технология пластмасс. 49. Эластомеры, включая натуральный каучук. 50. Промышленные углеводы. 51. Целлюлоза, лигнин и др. 52. Покрытия, чернила и др. 53. Поверхностно-активные вещества и детергенты. 54. Жиры и воска. 55. Кожа и родственные материалы. 56. Общая биохимия. 57. Энзимы. 58. Гормоны. 59. Радиационная биохимия. 60. Биохимические методы. 61. Биохимия растений. 62. Биохимия микробов. 63. Биохимия немлекопитающих животных. 64. Кормление животных. 65. Биохимия млекопитающих животных. 66. Патологическая химия млекопитающих. 67. Иммунохимия. 68. Фармакодинамика. 69. Токсикология, загрязнение воздуха, промышленная гигиена. 70. Пищевые продукты. 71. Регуляторы роста растений. 72. Пестициды. 73. Удобрения, почвы и питание растений. 74. Ферментация. [c.50]

    Высокими эксплуатационными свойствами обладают покрытия на основе эластомеров. Растворы для покрытий готовят из низкомолекулярных или деструктированных каучуков и легко растворимых эластомеров, к которым относятся хлорированный каучук, циклизированный каучук, бутадиен-стирольные и бутадиен акрилонитрильные сополимеры, сульфохлорированный полиэтилен низкомолекулярные полисульфидные и хлоропреновые эластомеры Из перечисленных материалов наиболее широкое применение в ан тикоррозионной технике нашли сульфохлорированный полиэтилен полисульфидные и хлоропреновые эластомеры. [c.109]


Библиография для Каучуки Эластомеры покрытия: [c.210]   
Смотреть страницы где упоминается термин Каучуки Эластомеры покрытия: [c.407]    [c.777]    [c.5]    [c.235]    [c.23]    [c.239]    [c.89]    [c.337]    [c.119]    [c.7]    [c.144]    [c.189]    [c.211]   
Битумные материалы (1974) -- [ c.216 , c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки Эластомеры

Эластомеры



© 2025 chem21.info Реклама на сайте