Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен и близкие к нему полимеры

    Наряду с этим в настоящее время вырабатывают линейный полиэтилен низкой плотности при низком давлении, используя методы газофазной, суспензионной и растворной полимеризации. Строение полиэтилена высокой плотности низкого давления близко к линейному, в отличие от полиэтилена низкой плотности (высокого давления) и, соответственно, он обладает более высокой степенью кристалличности и твердостью, что затрудняет его переработку в изделия. Степень разветвленности полиэтилена низкой плотности на порядок выше, а боковые цепи длиннее, вследствие чего его кристалличность, температура плавления и твердость меньше, что ухудшает механические свойства. Путем подбора условий полимеризации при низком давлении и использования сополимеров, таких как бутен-1, гексен-1 или октен-1, позволяющих получить линейный полиэтилен низкой плотности с контролируемой степенью разветвленности, можно получить полимер сочетающий наиболее ценные свойства полиэтилена низкого и высокого давления. Производство линейного полиэтилена низкой плотности в промышленно развитых странах составило в 1983 г. около [c.565]


    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Особенности в структуре строения линейных полимеров. Многие высокомолекулярные вещества, к числу которых относятся целлюлоза, каучук и синтетические волокна, имеют смешанную структуру. Возникающие между макромолекулами силы притяжения иногда достигают таких величин, что молекулы располагаются симметрично, образуя кристаллические области. Другие области линейных полимеров остаются неупорядоченными, аморфными. Эта особенность строения линейных полимеров служит наглядным подтверждением возможности сочетания в одном и том же материале высокой прочности с отличной пластичностью. В неразвернутом состоянии макромолекулы вытягиваются достаточно легко. При полном растяжении они настолько близко подходят друг к другу, что оказываются в сфере действия межмолекулярных сил, благодаря чему полимер делается исключительно прочным. Растягивание макромолекул линейных полимеров является одной из важнейших технологических операций при производстве волокон, повышающей их прочность. Макромолекулы кристаллических полимеров обладают регулярной структурой. К ним относятся полиэтилен, полиизобутилен и ряд других полимеров линейной полимеризации. В упорядоченных кристаллических областях макромолекулы связаны друг с другом прочно межмолекулярными и водородными связями. В результате этого материал приобретает устойчивость к разрыву и жесткость. Аморфным областям свойственно противоположное— они придают материалу гибкость и эластичность. [c.281]


    Адсорбенты типа I являются неспецифическн.ми. Их поверхность не содержит ни полярных функциональных групп, нн ионов. Это главным образом графитированная сажа, нитрид бора, насыщенные углеводороды и углеводородные полимеры (например, полиэтилен, полистирол). Они способны только к несиецифическим взаимодействиям с сорбируемыми молекулами, включая самые полярные молекулы. Вода элюируется близко с метаном и аммиаком. [c.100]

    К числу линейных гомоцепных полимеров относятся также такие полимерные углеводороды и их галоидопроизводные, как полиэтилен, поливинилхлорид, иоливииилидепхлорид, политетрафторэтилен и многие другие карбоцеппые органические полимеры, которые здесь ие будут рассматриваться, так как они были описаны ранее (см. гл. 2). К ним близко примыкают рассмотренные нами ранее полимеры водородистых соединенш кремния и германия полисиланы и полигерманы [84]. [c.334]

    Химические свойства и модификация. Алифатич. П. п. обладают значительно меньшей термич. стойкостью, чем полиолефины, но большей, чем полиэфиры. сложный. Энергии диссоциации связей С—С и С—О весьма близки (по расчету связь С—О даже более прочна), однако вследствие значительной полярности эфирная связь легко подвергается гетеролитич. расщеплению под действием различных кислотных агентов. П.п. менее стойки, чем полиолефины, и к окислению. Так, полиметиленоксид проявляет себя как типичный полиальдегид (см. Альдегидов полимеры)— он легко деполимеризуется, причем инициирование происходит и с конца цепи, и при случайном разрыве макромолекул. Остальные П.п., включая полиацетали, в меньшей степени проявляют тенденцию к деполимеризации. По-видимому, полиэтилен- и полипропиленоксиды наиболее термически устойчивы и разлагаются с заметной скоростью только при темп-рах выше 300°С. С введением полярных заместителей в элементарное звено существенно повышается в нек-рых случаях хемостойкость П. п. Напр., полидихлорметилоксациклобутан наиболее химически стойкий полимерный материал. Высокой химической и термической стабильностью обладают некоторые фторзамещенные П. ff., а также полимеры, содержащие циклы в основной цепи. Температуры их размягчения и деструкции достигают 300—350°С. [c.64]

    Полимеризация этилена на окислах металлов на носителе представляет промышленный интерес, так как образующийся полиэтилен, полученный полимеризацией на катализаторах Циглера — Натта, имеет линейное строение. То, что указанные типы катализаторов одинаково влияют на строение образующихся полимеров, является, очевидно, следствием идентичности механизмов их полимеризации и природы активных центров. Активация путем восстановления окиси металла на носителе очень близка к алкилированию (восстановлению) соединения переходного металла, одного из компонентов катализатора Циглера — Натта. Собственно, если не обращать внимания на носитель, то большинство таких систем, состоящих из катализатора (окисла металла) и восстановителя, попадает под определение катализатора Циглера — Натта. От последних они отличаются лишь меньшей активностью. Полимеризацию на окисных катализаторах проводят при сравнительно высоких температурах (100—200 °С). Многие мономеры (например, стирол), полимеризующиеся на катализаторах Циглера — Натта, неактивны в присутствии окислов металлов па носителе. Такие катализаторы отличаются также очень низкой стереорегулирующей сиособпостью. Если частично кристаллический полипропилен еще можно получить на таких катализаторах, то при полимеризации большинства других а-олефинов образуются только аморфные или очень слабо кристаллические полимеры. [c.535]

    Кристаллизующиеся термопластичные полимеры (полиэтилен, поливинилиденхлорид и др.) в расплавленном состоянии обладают очень хорошей текучестью они имеют четкую темп-ру плавления при недостаточном подогреве такие материалы малотекучи и плохо заполняют форму. Поступая в формующую полость, оии дают бесшовный спай, но требуют поддержания темп-ры инжекции (впрыска) в интервалах, близких темн-ре их плавления. Аморфные термопласты (полистирол, поливинилхлорид, пластики на основе эфиров целлюлозы и др.) имеют более низкую текучесть, хуже спаиваются, медленно заполняют формующую полость. Однако эти материалы способны постененно переходить в пластич. состояние, что позволяет вести их переработку в более широких диапазонах темп-р (150—200°). [c.29]

    Анализ ранних данных по теплоемкости политетрафторэтилена был проведен Старкуэзером (1960). В температурном интервале от 15 до 75 К он использовал частотный спектр Стокмейера и Хечта (см. рис. 111.15,6) с максимальной частотой 8,3-10 2 Гц. Использованное число вибраторов было 2,83, в противоположность полиэтилену, в котором число скелетных колебаний близко к 2. Более детальный анализ был проведен Готлибом и Сочава (1962). Они сравнили политетрафторэтилен с полиэтиленом в предположении, что оба эти полимера обладают плоской зигзагообразной конформацией цепей. Для полиэтилена в температурном интервале [c.205]

    Разработанные сравнительно недавно материалы полигид, теллит ЗВ и теллит 4А [394] являются типичными высокочастотными материалами. Они имеют превосходные диэлектрические характеристики. Так tgo полигида при высоких частотах равен 10 , а е не превышает 2,32. Длительная рабочая температура его эксплуатации может достигать 165 °С. Материалы теллит ЗВ и теллит 4А при тех же значениях е имеют tg6 около 1,5-Температурный диапазон их эксплуатации составляет от 250 до 210 °С. Полигид 265 представляет собой облученный полиэтилен, модифицированный стиролом. Диэлектрическая проницаемость его не превышает 2,42, а тангенс угла диэлектрических потерь 1,5-10" . Он может эксплуатироваться при температурах от —95 до 265 °С- Получается он облучением исходного продукта при температуре, близкой к точке плавления полимера. В этих условиях радиационно-технологической обработки сшивание молекул происходит в момент их хаотического расположения. Охлаждение материала не меняет зафиксированной облучением аморфной структуры, поскольку в результате сшивания молекул они удерживаются в хаотическом состоянии, не имея возможности к перемещениям, необходимым для рекристаллизации. [c.135]


    Другим примером кристаллического полимера является политетрафторэтилен, имеющий также большое значение как диэлектрик. Способность цепей политетрафторэтилена кристаллизоваться объясняется малым размером атома фтора, благодаря чему цепи могут близко располагаться относительно друг друга. Среди кристаллических полимеров можно выделить группу веществ, характеризуемых сильным межмолекулярным притяжением, благодаря симметричности их строения и действию особых связей, называемых в о дородными (стр. 43). Энергия межмолекулярного притяжения у таких полимеров, отнесенная к единице длины цепи (5 Л), более 5 ккал, тогда как у таких аморфных полимеров, как полихлорвинил, полистирол, полиметилметакрилат, она находится в пределах 2—5 ккал. К первым относятся полиамиды, полиэтиленгликольтерефта-лат, полиуретан и др. Эти полимеры отличаются высокой температурой плавления (у полиамида капрон — 214—218° С, у полиэтилен-гликольтерефталата — 260—264° С). Благодаря способности цепей макромолекул располагаться параллельно и прочной связи между ними, полимеры такого строения обладают большой прочностью вдоль расположения цепей (или вдоль волокна), что особенно важно для синтетических волокон и пленок. Повышение прочности достигается дополнительной ориентацией макромолекул при применении холодной вытяжки. [c.15]

    В качестве примера возьмем два разных исходных вещества, которые используются в процессе ротационного формования I) порошок полиэтилена с частицами размером около 0,5 мм 2) расплав капролактама, полимери-зующийся по анионному механизму и имеющий начальную вязкость, близкую к вязкости воды. В первом случае в закрьпую полую холодную форму засыпается порошок полиэтилена, форма приводится во вращение и помещается в камеру нагрева. Форма нагревается и происходит плавление частиц полиэтилена, которые находятся на стенке формы. Расплавленный полимер налипает на поверхности формы. Поскольку вязкость расплавленного полимера чрезвычайно высокая, он не стекает под воздействием сил фавитации в болото . Постепенно расплавляясь весь порошок налипает на поверхности формы. Важное значение имеет распределение температуры по поверхности формы. Наиболее сильно нафетые участки формы быстрей забирают полиэтилен и в этом месте образуется более толстая стенка изделия. При равномерном нафеве формы толщина стенки изделия получается одинаковой [50]. [c.719]

    Проводя аналогию между явлениями диффузии и совместимости полимеров, подчеркнем, что закономерности последней [530, 531] также не противоречат изложенным выше соображениям. Межфазное поверхностное натяжение на границе растворов несовместимых полимеров близко к нулю [532] и, казалось бы, эта характеристика не может служить мерой совместимости. Однако даже для полимеров близкой полярности она достигает заметных значений-от 1,0 (полистирол-полиизобутилен) [533] до 11,4 мН/м (полиметилметакрилат-полиэтилен) [194]. Несмотря на это a j-в первом приближении характеризует высоту энергетического барьера между контактирующими полимерами и, следовательно, должно коррелировать с прочностью адгезионных соединений. В этом убеждают данные рис. 31, на которюм липкость различных композиций но отношению к отдельным субстратам сопоставлена с разностью между поверхностными энергиями обоих элементов системы. Тогда, учитывая, что знак величины свободной энергии смешения не характеризует наличия или отсутствия совместимости [534], более однозначно термодинамическая совместимость может быть связана с избыточным потенциалом Гиббса в смесях полиме- [c.111]


Смотреть страницы где упоминается термин Полиэтилен и близкие к нему полимеры: [c.727]    [c.151]    [c.69]    [c.8]    [c.38]    [c.12]   
Смотреть главы в:

Действующие ионизирующих излучений на природные и синтетические полимеры -> Полиэтилен и близкие к нему полимеры




ПОИСК







© 2025 chem21.info Реклама на сайте