Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура, строение и свойства линейных полимеров

    Зависимость константы скорости от температуры процесса поликонденсации подчиняется уравнению Аррениуса (рнс. 86), Процессы поликонденсации носят ступенчатый характер. Рост цепи происходит постепенно в результате взаимодействия молекул мономеров с образовавшимся полимером. На определенных стадиях производства молекулы имеют линейную или разветвленную структуру и лишь в конечной стадии получения готовых изделий могут протекать реакции, в результате которых образуется трехмерная структура. Основные факторы, влияющие на скорость и направление реакции поликонденсации строение мономеров, в частности количество функциональных групп, их свойства и соотношение в реакционной смеси, тип катализатора и его активность, наличие примесей в мономере, а также строгое соблюдение технологического [режима реакции (температура, давление, степень перемешивания, продолжительность и т, п.). Примеси в процессе поликонденсации снижают молекулярную массу, образуют неактивные концевые группы и вызывают разветвление макромолекул. [c.199]


    СТРУКТУРА, СТРОЕНИЕ И СВОЙСТВА ЛИНЕЙНЫХ ПОЛИМЕРОВ 31  [c.315]

    Химические и физические свойства полимеров зависят от их химического состава (углеводород, сложный эфир, галогенид, лактам и т. д.), а также от мольной массы и строения макромолекул полимера. Различают линейные и разветвленные гомо-(I), со-(II) или тройные (III) полимеры, блок-сополи-меры (IV), привитые сополимеры (V) и сополимеры сетчатой структуры (VI). [c.413]

    Структура макромолекул определяет свойства полимера, поэтому изучение их следует начинать с исследования длины макромолекулы и ее строения. СВМПЭ, как полиэтилен, полученный при низком давлении, — линейный полимер с небольшим количеством боковых ответвлений и двойных связей. Ниже приведены структурные характеристики СВМПЭ и стандартного ПЭНД  [c.29]

    Кроме сравнительно небольшого числа работ, в которых предложены количественные соотношения между структурой и свойствами эпоксидных полимеров, в литературе имеется огромное количество данных о качественном влиянии тех или иных изменений в химическом строении на различные характеристики эпоксидных полимеров [30—38]. Так, существует много данных о влиянии молекулярной массы эпоксидного олигомера на Тс полимера [34—36], причем последняя обычно повышается с уменьшением Мс. Беккер [30] указывает па линейную зависимость температур стеклования от Пс в процессе отверждения, что дает возможность контролировать технологические процессы. Между многими свойствами, наиример Тс — Е, 7 с —ТКИ, Е — С и др. наблюдается линейная корреляция, пример которой приведен на рис. 3.1. Это связано с тем, что все указанные х.э-рактеристики зависят от одних и тех же структурных параметров и обусловленного ими межмолекулярного взаимодействия, в частности от Мс (рис. 3.2). [c.57]

    Нами рассмотрены основные свойства полимерных связующих для стеклопластиков, получаемых из термореактивных смол, т. е. полимеров с жесткой сетчатой структурой. Рассмотрение же линейных полимеров с этой точки зрения не входит в нашу задачу, хотя следует отметить, что в ряде случаев представляет определенный практический интерес использование полимеров линейного строения в качестве полимерных связующих для армированных систем. Это обусловливается рядом ценных свойств линейных полимеров высокой эластичностью в сочетании с механической прочностью и такими технологическими преимуществами перед термореактивными смолами, как, например, термопластичность, обусловливающая легкость переработки материалов в различные изделия. [c.148]


    Для эпоксидных полимеров, как и для других сильно сшитых полимеров, характерно образование глобулярной надмолекулярной структуры с диаметром глобул порядка нескольких сотен ангстрем [1—6, 21, 25, 80, 81]. Структуры других типов в эпоксидных смолах не обнаружены [25]. Следует отметить, что физико-механические характеристики полностью отвержденных эпоксидных полимеров сравнительно мало зависят от глобулярной структуры и от последующей термической обработки, если она не приводит к термодеструкции полимера [1, 25]. Таким образом, свойства эпоксидных полимеров определяются главным образом химическим и топологическим строением, а не надмолекулярной структурой, хотя в случае линейных полимеров последняя часто оказывает большое влияние на физико-механические характеристики. [c.58]

    Третья особенность химии высокомолекулярных соединений— это зависимость свойств полимеров от геометрической формы макромолекул. В химии низкомолекулярных соединений фор.ма и физико-механические свойства молекул рассматриваются в сравнительно редких случаях (пространственная изомерия, теория напряжения). В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, различные классы линейных высокомолекулярных соединений, в зависимости от их строения, могут значительно различаться по своим свойствам. Но они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают и , от пол меров другой структуры. [c.36]

    Линейные полимеры обладают специфическим комплексом свойств, а именно способностью образовывать высокопрочные анизотропные высокоориентированные волокна способностью к большим, длительно развивающимся обратимым деформациям способностью в высокоэластическом состоянии набухать перед растворением, иметь высокую вязкость самих растворов. Этот комплекс свойств связан со значительной молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, к редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится все менее ярко выражен. [c.108]

    По строению различают полимеры линейной, разветвленной и трехмерной структуры. Полимеры с пространственной структурой могут образовываться из полимеров линейной или разветвленной структуры при определенных условиях, в результате химической связи между линейными молекулами — сшивания молекул (рис. 124). Появление химической связи резко изменяет свойства полимера. [c.291]

    Если сопоставить резину с линейным полимером, то следует найти адекватную физическую модель, которая бы объяснила существование в текучем полимере свойств, характерных для резины с ее сеткой перманентных химических связей. Такой моделью согласно существующим представлениям является сетка с временными (флуктуационными) узлами, образованными как чисто механическими переплетениями макромолекул, так и любыми видами физических взаимодействий, локализованных в ряде точек по длине цепи. Введение понятия о сетке зацеплений является не более чем приемом моделирования свойств системы, имеющим эквивалентный характер, когда детальная структура материала неизвестна, но важно представление измеряемых характеристик материала через параметры, связанные с особенностями молекулярного строения среды. [c.273]

    Особенности топологического строения являются причиной того, что в густосетчатых полимерах сильно возрастает роль молекулярного уровня структуры в определении целого ряда свойств. Высокая топологическая сложность полимера мешает развитию различного рода морфологических образований, которые характерны для соответствующих линейных полимеров. Поэтому происходит в определенной степени нивелировка значения надмолекулярной организации, роль которой низводится до плотности упаковки или иных характеристик величины свободного объема. Таким образом, одной из актуальных задач является установление связи между топологическим уровнем структуры полимера и его свойствами в стеклообразном состоянии. [c.245]

    Углерод в любой форме - твердое тело в отличие от своих газообразных соседей по периодической системе элементов. Это объясняется полимерным строением молекул углерода, поэтому и графит, и алмаз, состоящие из одинаковых, только углеродных атомов, относят к полимерам. Любой кристалл алмаза представляет собой, по существу, идеально построенный трехмерный полимер. В графите полимерная упорядоченность распространяется только по плоскости. Существуют и одномерные (линейные) полимеры углерода карбин и поликумулен. Кроме того, углерод известен как единственный элемент, способный образовывать объемные полиэдрические структуры не только путем химического синтеза (кубан, призмейн и Пентагон), но и путем самоорганизации фуллерены). В настоящее время понятие фуллерены применяется к широкому классу многоатомных молекул углерода С (п от 24 и более) и твердым телам на их основе. Однако еще несколько лет назад фуллереном (точнее бакминстерфуллереном) называли молекулу Сбо, атомы которой располагаются на поверхности сферы в вершинах 12 равносторонних пятиугольников и 20 равносторонних шестиугольников. Ее радиус составляет 0,357 нм. Уникальные свойства фуллеренов привлекают внимание ученых всего мира. [c.8]


    Своеобразие строения макромолекул линейных полисилоксанов определяет их специфические свойства сравнительно низкую механическую прочность, мало изменяющуюся с повышением температуры высокую эластичность, сохраняющуюся и при низких (отрицательных) температурах очень высокие диэлектрические свойства, несмотря на наличие в структуре полимеров полярных групп растворимость в неполярных растворителях. [c.142]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    В основе ценных, а порой уникальных свойств полимеров лежат физико-химические особенности их строения. Структура полимеров достаточно стабильна благодаря относительной прочности связей между звеньями внутри цепи. Внутренние участки цепи как бы экранированы, защищены от внешних агрессивных химических воздействий. Вместе с тем отдельные цепи в структурах полимеров способны довольно плавно и обратимо смещаться относительно друг друга, изменять свои размеры за счет перехода от спиралевидной конфигурации к линейной, и наоборот. Благодаря этому при больших механических нагрузках структура полимеров не разрушается, а лишь несколько видоизменяется, сохраняя способность более или менее полно возвращаться к исходной после снятия нагрузки. Эти структурные особенности придают полимерным материалам ценные свойства высокую эластичность, способность к обратимым упругим деформациям — растяжению, изгибу, скручиванию. Другое ценное их качество — пластичность, способность принимать любую форму в процессе изготовления, что позволяет производить большинство изделий из полимеров простым и экономичным способом — отливкой и формовкой. [c.126]

    Слонимский, Каргин и Голубенкова [90] исследовали особенности деформационных свойств фенолформальдегидных смол на всех стадиях отверждения (резол — резитол — резит). Авторы приходят к выводу, что обратимые цепные и пространственные структуры в резольных смолах образуются за счет водородных связей, которые играют определяющую роль в начальных стадиях отверждения, но сохраняют свое значение и для предельно отвержденных резитов. Вычислена теплота образования подвижных узлов в резите, равная 6 ккал1моль. Подобное же исследование отверждения новолачной смолы выполнили Слонимский, Коварская и Клаз [911 и показали, что при содержании гексаметилентетрамина >5% эти смолы полностью отверждаются, обнаруживая три стадии отверждения аналогично резольным смолам. На основании исследования механических свойств новолачных смол при помощи динамометрич-ных весов Игонин, Красулина и Каргин [92] предполагают, что строение отвержденных фенолформальдегидных смол приближается к строению сшитых линейных полимеров, а не сплошных пространственных сеток, как это обычно принимается в литературе. [c.578]

    Типовые вязкоупругие свойства высокомолекулярных полимеров основаны на их структуре, которая определяется типом, размером и строением макромолекул. У синтетических полимеров макромолекулы представляют собой цепочки с линейными, разветвленными или сетчатыми цепями. Различные структуры молекул могут образовать основу для классификации полимеров, например, по ASTM 1418-78. Ниже в качестве примера приводится классификация полимеров по зависимости их структурно-механи-ческих свойств от температуры (DIN 7724)  [c.51]

    Строение и свойства натурального каучука. Эмпирическая формула натурального каучука (СзНа) - По своей структуре это линейный полимер, повторяющимся звеном которого является изопентеновая группа [c.289]

    ФУ, когда фрагменты нли мономолекулы соединяются в це-Например, натуральный каучук имеет линейную структуру [вйекул. Цепи могут быть и более или менее разветвленными, пример природный амилопектин и синтетический полиэтилен. W вот для эпоксидных смол характерна структура трехмерных "14>0 транственных сеток. Естественно, что пространственное строение макромолекул имеет существенное, а иногда н решающее значение для свойств изготавливаемых из них материалов. Например, вдрбы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать в каждой огромной макромолекуле всего одну нли две поперечные связи. Открытия молекулярной биологии еще ярче подчеркивают значение структуры макромолекул, которая определяет их свойства. Например, топология ДНК существенна для наследственных факторов. [c.33]

    Элементарная вулканизационная структура в свете этих данных представляет собой сложное образование, в котором химические поперечные связи и другие группировки (также элементы вулканизационной структуры) соединены друг с другом межмолекулярными или химическими связями. Образование ассоциированных вулканизационных структур связано с химическими или физическими процессами, ведущими к формированию трехмерной сетки, и не связано непосредственно с представлениями об упорядоченном строении каучука. Например, такие линейные полимеры, как термоэластопла-сты, обладают вплоть до температуры 100 °С (и выше) комплексом свойств вулканизата. Узлами сетки в них [c.6]

    Особенности физических свойств аморфных полимеров. Поскольку всякое структурное превращение в А. с. требует времени, что проявляется, как ранее упоминалось, в релаксационных явлениях, многие свойства аморфных полимерных тел очень чувствительны к скорости внешних воздействий, а также к темп-ре. Так, высокоэластич. линейный полимер ведет себя как стеклообразный (иногда даже хрупкий) при достаточно высоких скоростях деформациц или при низких темп-рах (см. Стеклообразное состояние), но проявляет текучесть, характерную для вязкотекучего состояния, т. е. для жидкого по агрегатному состоянию аморфного полимера, при достаточно медленных силовых воздействиях или при достаточно высоких темп-рах. Поэтому полимеры в А. с. являются упруговязкими телами при линейном строении их макромолекул и вязкоупругими телами при образовании прочной пространственной структуры. [c.62]

    Физико-механические свойства полимеров. Физико-механические свойства полимеров сильно зависят от их внутреннего строения. Большое значение для механических свойств имеет форма макромолекул. Различают полимеры 1) линейные, макромолекулы которых можно рассматривать как длинные нити, сравнительно мало связанные друг с другом 2) пространственные, или сетчатые, молекулы которых представляют собой своеобразный каркас. Примеры линейных полимеров описанные ранее полиэтилен, полипропилен, певулканизованный каучук. Пример полимера с пространственной структурой молекул — вулканизованный каучук. [c.336]

    По строению макромолекулярной цепи полимеры подразделяют на линейные, разветвленные и сшитые (с пространственной сетчатой структурой). Если молекулы мономера бифункциональны, то образуются линейные полимеры, так как при росте макромолекулы бифункциональность остается постоянной. Если функциональность реагирующих молекул мономеров больше двух, то в процессе полимеризации функциональность растущей молекулы увеличивается и образуется полимер с пространственной структурой (сшитые полимеры). При определенных условиях нолучагс тся разветвленные полимеры (с боковыми ответвлениями от основной цени), имеющие промежчточные свойства между линейными и сшитыми полимерами. [c.353]

    Все эти полимеры содержат в полимерной цепи циклические фрагменты алицикличеокие, ароматичеокие бензольного или гетероциклического ряда, что обусловливает появление в таких линейных полимерах специфических свойств. Некоторые из этих полимеров можно назвать блок-или полулестничными полимерами. Некоторые из них, согласно литературным данным, частично имеют трехмерную структуру. Подробнее эти особенности строения и свойств полимеров будут рассмотрены в соответствующих разделах книги, но основное, на что следует обратить внимание,— это справедливость термина линейный полимер , подтверждаемая анализом десяти типов полимеров. [c.8]

    Установлено, что максимальное снижение силы сцепления льда с пленками из полиорганосилоксанов наблюдается при соотношении R/Si в полимере, равном 1.5. При этом соотношение метильных и фепильных радикалов равно 2. Изучено влияние строения полилгеров (линейные, линейно-разветвленные) и величины их поверхностного натяжения на криофобные свойства пленок. Показано, что полимеры линейной структуры, имеющие наименьшую величину поверхностного натяжения (20 эрг/см ), обеспечивают лучшие криофобные свойства. [c.283]

    Свойства полимеров зависят от их строения, так как полимеры могут находиться в аморфном или кристаллическом состоянии, или содержать аморфные и кристаллические фазы. Соотношение между кристаллическими и аморфными фазами в полимере характеризуется степенью кристалличности. Кристаллическую структуру могут иметь полимеры, макромолекулы которых строго регулярной линейной структуры, или полимеры с редкосетчатым строением. Полимерам, имеющим кристаллическое строение, свойственна более высокая температура плавления, улучшенные механические и химические свойства по сравнению с аморфными полимерам ). [c.353]

    Решение основной задачи материаловедения — нахождение связи между строением и свойствами материала — приобретает особую сложность для пенополимеров. В самом деле, для рассматриваемых материалов можно указать по крайней мере шесть уровней структурных организаций, которые с.ледует иметь в виду при изучении свойств пенополимеров 1) химический— состав и первичная структура исходного полимера 2) вторичная структура — конформация молекул линейного или сетчатого полимера 3) надмолекулярная структура стенок и ребер ячеек 4) макроструктура (тип ГСЭ) 5) микроячеистая структура ГСЭ — микроячейки на поверхности и внутри стенок и ребер макроячеек 6) надъячеис-тая структура — распределение ГСЭ в объеме материала, распределение объемного веса по высоте и ширине пеноблока или пено-изделия [73 — 75]. [c.14]

    Строение и свойства натурального каучука. Натуральный каучук имеет эмпирическую формулу С5Н8 и по своей структуре является линейным полимером, повторяющимся звеном которого является изопентеновая группа  [c.259]

    Глюканы и целлюлоза состоят из глюкозных остатков с р-связями, но их свойства различны. Радикалы целлюлозы связаны между собой исключительно посредством р-( 1-4)-связей, образующих повторяющиеся структурные фрагменты дисахарида цел-лобиозы. Водородные связи между соседними фрагментами глюкозы (0-5 и 0-3, О-2 и 0-6 ) стабилизируют этот линейный полимер как жесткую ленточную структуру (рис. 1.4). Подобные цепочки способны соединяться между собой и складываться, образуя вытянутые кристаллические микрофибриллы, играющие основную роль в струк-турообразовании растений. Внутри этих микрофибрилл параллельные цепочки фиксируются межмолекулярными водородными связями. Таким образом, можно говорить о кристаллическом строении целлюлозы, несмотря на то что внутри микрофибрилл степень кристаллизации может быть разной, включая более аморфные области. Микрофибриллы целлюлозы являются основным структурным элементом клеточных стенок злаковых культур, образуя радикалы, которые остаются после щелочного экстрагирования материала клеточной стенки.  [c.25]

    В качестве примера, иллюстрирующего влияние содержания отвердителя на свойства образующихся полимеров с жесткой сетчатой структурой, на рис. 40 нривёдена зависимость теплостойкости эпоксидной смолы от количества введенного в реакцию фталевого ангидрида [141]. (Теплостойкость определялась по методу Мартенса.) Характер кривой показывает, что нри введении небольших количеств фталевого ангидрида сшивание эпоксидного полимера в пространственную сетку происходит не полностью и в структуре полимера преобладают молекулы линейного строения, что обусловливает его пониженную теплостойкость. Содержа- [c.102]

    Свойства и важнейшие характеристики В. с. Свойства В. с. определяются химич. составом, строением, взаимным расположением макромолекул (надмолекулярной структурой) в конденсированной фазе В. с. В зависимости от этих факторов свойства В. с. могут меняться в очень широких пределах. Так, папр., полибутадиен, построенный из гибких углеродных цепей, при комнатной темн-ре представляет собой легко деформируемый эластичный материал, в то время как нолиметилметакрилат, цепи к-рого содержат сильно взаимодействующие полярные группы, при комнатных темп-рах является твердым, стеклообразным продуктом он приобретает каучукоподобные свойства лишь при темп-рах порядка 100 . Целлюлоза — полимер с очень жесткими линейными цепями, вообще пе может существовать в каучукоподобном состоянии вплоть до темп-ры ее химич. разложения. В рассмотренных примерах различия в химич. составе вызывают существенные различия в физич. свойствах В. с. Однако даже при одном и том же химич. составе в зависимости от строения больших молекул свойства В. с. могут сильно меняться. Типичным примером могут служить полимеры полиэтилена, полученные путем полимеризации при низком и высоком давлении. Т. наз. полиэтилен низкого давления, имеющий линейное строение, плавится при более высокой темп-ре, чем разветвленный полиэтилен, полученный полимеризацией при высоком давлении (соответственно 135° и 115°). Плотность и степепь кристалличности также значительно выше в случае линейного полиэтилена. Большие различия в свойствах В. с. могут наблюдаться даже в том случае, если различия в структуре макромолекул на первый взгляд и невелики. Так, изотактический полистирол, к-рый, как и атактический полистирол (см. Изотактические полимеры), постровпиа линейных цепей и отличается от последпего лишь регулярной последовательностью третичных асимметричных атомов углерода в цепи, представляет собой кристаллич. вещество с т. пл. ок, 235°, в то время как атактич. полистирол вообще не способен кристаллизоваться и размягчается при темп-ре ок. 80°. В данном случае различия в микроструктуре макромолекулярной цепи влекут за собой и различия в надмолекулярной структуре. лагодаря регулярному строению цепей изотактич. полистирола в пом могут возникать надмолекулярные образования со структурой, характерной для кристаллич. полимеров. [c.349]

    Первыми синтетическими полимерами, которые стали производиться в промышленном масштабе с 1920 г., были термореактивные пластики, а именно фенол- и мочевиноформальдегидные смолы. Спустя несколько лет (1930 г.) в области покрытий, которая обычно обслуживалась лакокрасочной промышленностью, выдаюш,ееся значение приобрели алкидные смолы. Эти успехи были достигнуты в то время, когда связь между структурой и свойствами полимеров была изучена плохо и еще не был решен спор между противоположными друг другу теориями мицеллярного и макромолекулярного строения. Однако было обращено внимание на существенные различия в физических характеристиках линейных полимеров, полимеров с двухмерным разветвлением цепей и трехмерных полимеров с поперечными связями между цепями. [c.10]

    Изменение свойств полимера путем увеличения размеров макромолекул и изменения их строения, например, в результате превращения линейного полимера в полимер сетчатой структуры. Этот метод называют методом мостикообразо-вания, или сшивания линейных полимеров. Ко второму направлению может быть отнесен также синтез новых полимеров путем блоксополимер изации и привитой сополимеризации. [c.203]

    Типы и свойства хлоропреновых каучуков. Полимеризация хлоропрена в присутствии инициаторов радикального типа может привести к образованию полимеров трех видов. При самопроизвольной полимеризации хлоропрена получается со-полимер, представляющий собой сильно структурированный полихлоропрен. При инициированной полимеризации в отсутствие регуляторов длины цепи, особенно при достижении высоких степеней превращения мономера, получается ,1-полихлоропрен — слабо структурированный полимер, обладающий свойствами вулканизованной резины. При использовании регуляторов полимеризации может быть получен линейный а-полихлоропрен. Этот полимер хорошо растворим в соответствующих растворителях, обладает достаточно высокой пластичностью, что пшволяет легко формовать изделия из него при переработке полимера. а-Полихлоропрен представляет наибольший практический интерес, и большинство хлоропреновых каучуков обладают линейной структурой. Строение полимерных цепей (Й-, р,- и а-полихлоропренов одинаково, различие состоит только в количестве межмолекулярных химических связей. [c.457]

    Если сопоставлять механические свойства каучуков обеих групп с их химической структурой и физической природой, то можно получить ключ к пониманию различия в свойствах. Каучуки первой группы имеют регулярное строение линейных полимеров с ответвлениями в виде метильных групп или атомов хлора. Наличие этого рода боковых групп очень важно. Полиэтилены, обладающие также весьма упорядоченной структурой и очень рысоким молекулярным весом, не проявляют каучукоподобных свойств, отличаясь от полиизобутиленов только отсутствием каких бы то ни было боковых групп. Все каучуки первой группы в силу упорядоченности своего строения обладают способностью кристаллизоваться при растяжении. Считают [2], что кристаллиты, образующиеся при растяжении, и играют роль усиливающих наполнителей в этих каучуках. [c.424]

    Свойства полимера зависят от химической структуры элементарных звеньев, количества звеньев в макромо.г екулах и строения макромолекул. Для макромолекул цепевидной линейной структуры принято следующее написание  [c.9]


Смотреть страницы где упоминается термин Структура, строение и свойства линейных полимеров: [c.377]    [c.33]    [c.337]    [c.334]    [c.349]    [c.89]    [c.89]    [c.164]    [c.357]    [c.96]   
Смотреть главы в:

Основы технологии синтеза каучуков Изд 2 -> Структура, строение и свойства линейных полимеров




ПОИСК





Смотрите так же термины и статьи:

Линейные полимеры

Полимеры строение



© 2024 chem21.info Реклама на сайте