Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение в сточных и природных водах

    Определение свободного комплексона не представляет каких-либо затруднений и может быть выполнено титрованием раствором соли магния с индикатором эриохром черным Т, т. е. титрованием, обратным обычно применяемому для определения жесткости природных вод. Здесь приводятся методы определения общего содержания комплексона III в сточных водах, свободного и связанного. [c.200]


    Как п при определении качества природных вод, для характеристики состава сточных вод требуется большое число разнотипных анализов — химических, физико-химических, санитарно-бактериологических. [c.73]

    Метод пригоден для определения бора в морской воде и других природных водах, для анализа сточных вод и т. п. [c.326]

    Плотный остаток определяется из фильтрованной пробы и показывает содержание веществ в коллоидном и истинно растворенном состоянии. В сточных водах, поступающих на сооружение биологической очистки, плотный остаток не должен превышать 10 г/л, так как жизнедеятельность микроорганизмов в более минерализованной среде нарушается. Определения проводят, как и в анализе природных вод. [c.54]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Как уже упоминалось, соосаждение при помощи носителей имеет большое значение для выделения малых количеств урана. Вследствие этого методы соосаждения широко применяются при определении урана в сточных и природных водах, а также для выделения его при определении в растительных и животных тканях и в материалах, содержащих уран в незначительных количествах. [c.285]

    Разработан быстрый, пригодный для работы в поле метод концентрирования микроэлементов (Си, 2п, РЬ, Мп, Со, V, Ш, Мо, НЬ и Ве) в природных водах соосаждением с карбонатом кальция [203]. Берут 1 л исследуемой воды. Метод может быть применен для концентрирования и последующего определения микроэлементов в сточных водах и водоемах, загрязненных стоками промышленных предприятий. [c.149]

    Определение ртути в сточных водах описано в работе [10431. Методики определения ртути в природных водах приведены в [302, 303]. [c.172]

    В табл. 11.16 и 11.17 приведены обобщенные В.Г. Амелиным [8] тест-методы определения различных компонентов жидких сред и характеристики тест-систем, используемых для определения некоторых тяжелых металлов в сточных и природных водах. [c.226]

    Как метод концентрирования хроматографию применяют сравнительно редко. Исключение составляет ионообменная хроматография, которая весьма удобна для выделения и абсолютного концентрирования определяемых ионов путем перевода из большого объема раствора в малый, а также хроматография на хелатных (комплексообразующих) сорбентах, отличающаяся высокой эффективностью и избирательностью извлечения ионов металлов. Такими способами концентрируют, например, микроколичества металлов при их определении в природных или сточных водах. Для аналогичных целей в органическом анализе широко применяют сорбцию на гидрофобных сорбентах. Ионный обмен, осуществляемый в статических условиях (без направленного движения жидкой и твердой фаз относительно друг друга), часто превосходит ионообменную хроматографию в качестве метода концентрирования. [c.78]

    Сейчас для определения ХПК сточных вод применяют исключительно бихроматный метод. Перманганатный метод используется только при анализе органических компонентов природных вод, так как при большом количестве зачастую трудно-окисляемых органических соединений в стоках данный способ непригоден. В то же время бихромат калия в 18 н. серной кислоте в присутствии катализатора — сульфата серебра — способен окислять практически все органические вещества на 95— 100%. Суть метода заключается в обработке предварительно отфильтрованной через бумажный или мембранный фильтр сточной воды раствором бихромата калия и концентрированной серной кислотой с подогревом или без него в присутствии сульфата серебра. Непрореагировавший бихромат после окончания реакции оттитровывают раствором соли Мора, используя в качестве индикатора ферроин или Ы-фенилантраниловую кислоту. ХПК в миллиграммах кислорода на 1 л сточной воды определяют путем простого расчета. [c.123]

    НЕФТЕПРОДУКТЫ Определение в сточных и природных водах  [c.340]

    Метод служит для анализа сточных вод, содержащих продукты переработки и очистки нефти на нефтеперерабатывающих заводах, и для анализа вод природных водоемов в тех случаях, когда устанавливают, удовлетворяют ли эти воды принятым нормам предельно допустимых концентраций нефти и нефтепродуктов (0,1—0,3 мг л). Нефтепродуктами при анализе вод следует считать неполярные и малополярные соединения, растворимые в гексане (гексан может быть заменен петролейным эфиром). Это определение сужает понятие нефтепродукт , ограничивая его углеводородами, являющимися основной частью нефти (и еще очень небольшим числом органических соединений, редко сопутствующих углеводородам в сточных и природных водах). В то же время это определение достаточно четко выражает химико-аналитические свойства нефтепродуктов . [c.340]

    При определении резорцина в неокрашенных сточных водах или в природных водах подготовку воды к анализу не проводят, а начинают прямо с хода определения. [c.240]

    Проточно-инжекционный анализ (ПИА) открывает широкие возможности для создания автоматических аналитических систем определения компонентов природных и сточных вод, в том числе растворенных форм кремния [1]. Предлагаемый спектрофотометрический метод определения силикатов на уровне 0,1—3,0 мг ЗЮг/л реализован в системе обратного ПИА и основан на известной реакции образования молибденовой сини в результате восстановления желтой кремнемолибденовой гетерополикислоты, образуюш,ейся при взаимодействии кремния с молибдатом аммония в кислой среде [2]. [c.99]

    Обобщая изложенное, можно предложить такую последовательность этапов оценки пригодности прямой ионометрии для решения задач анализа ионного состава природных и сточных вод вначале любыми независимыми методами изучают компонентный состав анализируемой воды и подбирают модельный раствор, содержащий примесные компоненты. На втором этапе готовят серию растворов определяемого иона на дистиллированной воде и строят градуировочный график с определением и Затем измеряют потенциал в анализируемой пробе сточной или природной воды ( i), разводят эту пробу в два раза, снова измеряют потенциал ( 2) и рассчитывают коэффициент наклона [c.108]


    Назаренко И. И., Кислова И. В., Бахарева Т. В. ид р. Атомноабсорбционное определение ртути в водах после сорбционного концентрирования на полимерном тиоэфире//Определение нормируемых компонентов в природных и сточных водах. М. Наука, 1987. [c.192]

    Разработаны атомно-абсорбционные методики определения меди, никеля, кобальта, кадмия, железа, цинка, марганца, свинца, кальция, магния и калия в сточных и природных водах при содержании 0,005—1 мг/л ртути экстракционным пламенно-фотометрическим методом в сточных водах на уровне [c.193]

    Разработана схема анализа сточных и природных вод на содержание нормируемых тяжелых металлов, включающая их предварительное экстракционное концентрирование в виде диэтилдитиокарбаминатов, разделение методом тонкослойной хроматографии и визуальное или денситометрическое определение соответствующих комплексов непосредственно в хроматографических зонах. Относительное стандартное отклонение при определении металлов при содержании на уровне ПДК находится в пределах 0,1. [c.194]

    Интересно предложение об использовании в качестве противо-иона для экстракции анионных СПАВ хелатов железа(II) с 1,10-фенантролином, 2,2 -дипиридилом, 2,2, 2"-трипиридилом, 4,7-диметил-1,10-фепантролином. Ошибка определения для природных вод равна 1,4%, для сточных — 3,7%. Эти реакции более селективны. Так, комплекс Ре(11)-дипиридил применяют при большом содерЖ1ации роданид-ионов [20, 21]. [c.236]

    Для анализа легких примесей используется оригинальная схема накопления примесей при фронтальном натекании анализируемой среды в вакуумированную обогатительную колонку. При этом Легкие компоненты быстрее проходят вдоль колонки и собираются в емкость, соединенную с выходом обогатительной колонки через кран, осуществляющий дозирование извлеченных легких примесей. Основная предпосылка успешного применения метода фронтально-адсорбционного обогащения — обеспечение достаточного различия в сорбируемости определяемых примесей и основного компонента среДы. Фронтально-адсорбционный метод извлечения легких примесей реализован в двух вариантах в виде приставки фронтального обогащения ПФО-48, пред-назначен1рй для извлечения из газовых сред, и в виде приставки ПФО-49, используемой для извлечения растворенных газов и легких. компонентов из жидких смесей. Названное оборудование позволяет на 2—3 порядка повысить чувствительность анализа. В качестве примера может служить определение содержания Не в воздухе [5-10 % (об.)] с помощью детектора теплопроводности средней чувствительности [порог 5-10"2 /о (об.)]. Фронтально-адсорбционный метод извлечения примесей из жидких сред весьма эффективен при анализах сточных вод промышленных предприятий, при определении загрязнения природных вод нефтепродуктами. [c.144]

    Радикальное решение проблемы снижения расхода природной пресной воды и охраны водоемов от загрязнения сточн д1Ми водами заключается в создании систем замкнутого водооборота на промышленных предприятиях. В СССР разработаны типовые проекты замкнутого оборотного водоснабжения для крупных химических комбинатов практически без стоков и расхода свежей воды. Очистка сточных вод служит промежуточной стадией в циклической схеме водооборота, тогда как в существующих прямых схемах очистке подвергаются сточные воды перед их сбросом в естественные водоемы. Основные решения в вариантах циклической схемы очистки и повторного использования сточных вод заключаются в следующем 1) во всех системах предусмотрены рециклы сточных вод с наличием локальных очистных установок на определенной ступени рецикла 2) сброс в общезаводскую канализацию разрешен только для стоков, которые нельзя повторно использовать в данном производстве, но которые можно очистить на общезаводских очистных установках 3) все сточные воды разделены на самостоятельные потоки хозяйственно-бытовые, органозагрязненные, сильноминерализованные, слабоминерализованные и ливневые. [c.245]

    Разработан план проведения эксперимента по определению погрешностей методик определения методом атомно-эмисснон-ной спектроскопии в сточных и природных водах микроэлементов  [c.139]

    Отбор гомогенной жидкости из потока проводят через определенные интервалы времени и в разных местах (рис. 3.2, а). Для отбора проб на разной глубине используют специальные пробоотборные устройства — батометры различной конструкции. Основная часть батометра — цилиндрический сосуд вместимостью 1—3 л, закрывающийся сверху и снизу крышками. После погружения в жидкость на заданную глубину крышки щшиндра закрывают и сосуд с пробой поднимают на поверхность. Место и время отбора жидкости выбирают в зависимости от решаемой задачи. Например, при анализе сточных вод необходимо согласовать время и место отбора пробы с технологическим процессом учитывать прохождение сточной воды через очистные сооружения анализировать не только воду самих стоков, но и воду водоема ниже и выше впадения в него стока, что покажет, насколько водоем загрязняется сточными водами. Существуют также правила, регламентирующие место и время отбора природных вод в реках, озерах и других водоемах. [c.62]

    На основе электрода Orion 96-11 разработано автоматическое устройство для определения натрия в сточных и природных водах с производительностью 20 проб в ч. Предел обнаружения натрия 0,1 мкг/мл, стандартное отклонение <10% [1144]. [c.89]

    Кроме того, вызвать зафязнение природных вод могут сточные воды шахт и рудников, имеющие повышенную минерализованность и содержащие взвешенные частицы определенную опасность представляют также дренажные воды с орошаемых земель, которые привносят в реки выщелоченные из засоленных толщ почвофунтов легкорастворимые соли. Такого рода явления получили распространение в бассейне Аральского моря. [c.11]

    Содержание различных форм серы в природных водах зависит от pH пробы. Для определения некоторых неустойчивых форм (HjS, HS ) берется специальная проба, обеспечивающая их стабилизацию сульфид- и гидросульфид-ионы связываются в dS ацетатом кадмия, содержащимся в специальной зарядке. В некоторых случаях достаточно определить общее содержание соединений серы, окисляемых иодом (HaS, HS , S20 и SOD- Пробы поверхностных и сточных вод консервируют добавлением 3—4 г NaOH на 100 мл воды [457]. [c.178]

    Полярографическое определение мышьяка в природных и сточных водах описано в работах [93, 97, 1029]. Давидюк [97] разработал метод, позволяющий определять до 1,25-10 % As на фоне гидроокиси кальция и лимонной кислоты определению не мешают все элементы, входящие в состав природных вод. Исключение составляют Zn и Ni их мешающее влияние устраняют введением в раствор комплексона III (0,004 молъ/л). [c.87]

    Исследования Д. Г. Звягинцева по адсорбции микроорганизмов на модифицированной поверхности стекла, содержащей преимущественно либо гидрофильные (NH+2, С00 , 0Н ), либо гидрофобные — (СНз) — группы, еще раз продемонстрировали роль природы поверхности адсорбента во взаимодействии мел<ду микробными клетками и твердыми материалами, а также всю сложность этого процесса [101, 103, 198]. Определенную селективность по отношению к вирусам проявляют некоторые синтетические полиэлектролиты. Например, сополимер стирола и малеинового ангидрида, сшитый дивинилбензолом, способен адсорбировать из воды вирус табачной мозаики (палочки длиной 3000 А и диаметром 160 A) на 100% и вирус полиомиелита (шарообразные, диаметром 350 А с большим содержанием РНК) —на 99,99%, в то время как ионообменная смола Амбер-лайт ХЕ-119 поглощает только 97о вируса табачной мозаики. Поперечносшитый сополимер азобутилена и малеинового ангидрида РЕ 60 в виде порошка с размером частиц 100 меш адсорбирует вирусы в присутствии других микроорганизмов и органических веществ, что позволяет обходиться без дополнительного фильтрования или обработки жидкости ионообменными смолами при концентрировании вирусов и выделении их из различного рода сточных и природных вод [509, 511]. В ионообменных смолах аниониты, поверхность которых заряжена положительно, адсорбируют микроорганизмы значительно лучше, чем отрицательно заряженная поверхность катионитов. В последнем случае определенное значение имеет природа катионов, насыщающих смолу сравнительно хорошо сорбируются отдельные микроорганизмы (например. Вас. my oides, Sar ina Sp.) водородной формой смолы, хуже — катионитами, насыщенными Си +, Ее + и А1 +, и еще хуже при насыщении ионами кальция, магния и бария. Формы смолы, содержащие одновалентные катионы (К+, Na+, NH+4), практически не сорбируют [c.190]

    Определение ионов тяжелых металлов. Чаще всего в сточных водах предприятий и в природных водах определяют ртуть, свинец, кадмий, олово, цинк, сурьму и другие токсичные ионы. При этом используются физико-химические методы (амперометрические, экстракционно-фото-метрические и др.), описанные в гл. XXV—XXXII. [c.159]

    Изложены результаты работ сотрудников ГЕОХИ АН СССР за 1982—1985 гг. по созданию методик анализа природных и сточных вод. Подробно описаны исследования по усовершенствованию и созданию методик атомно-абсорбционного и атомно-эмиссионного определения тяжелых металлов, в том числе с сорбционным и экстракционным концентрированием фотометрическое определение тяжелых металлов и сульфатов ионометрическое и вольтамперометрическое определение тяжелых металлов, аммония, сульфидов и галогенидов проточно-инжекдионный метод анализа природных вод и атмосферных осадков. Описано также определение минеральных компонентов сточных вод методом тонкослойной хроматографии, ряда нормируемых органических соединений — методами газовой, жидкостной и ионной хроматографии, а также методами ИК-спектроскопии и лазерной флуориметрии. [c.2]

    АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ МИКРОПРИМЕСЕЙ В СТОЧНЫХ И ПРИРОДНЫХ ВОДАХ С ПРИМЕНЕНИЕМ КОНЦЕНТРИРОВАНИЯ [c.69]

    Определение микропримесей в сточных и природных водах с концентрированием путем упаривания [c.70]

    Атомно-абсорбционный метод позволяет осуществлять непрерывный контроль чистоты сточных вод. Проведено непрерывное определение примесей меди и железа на уровне 0,1 — I мг/л в нескольких пробах сточных и природных вод. Определение проводят по единому градуировочному графику в течение целого рабочего дня через каждые 30 мин. Растворы сравнения, содержащие 0,1—1 мг/л железа и меди, готовят из стандартного образца ГСОРМ-2 разбавлением дистиллированной водой. Относительное стандартное отклонение результата определения 0,02 (п=10, Р = 0,95). [c.70]

    Варшал Г. М., Пунгор Э., Замокина Н. С. идр. Определение сульфидов в природных водах в проточно-инжекционных системах потенциометрическим методом // Определение нормируемых компонентов в природных и сточных водах. М. Наука, 1987. [c.196]

    Цингарелли Р. Д., Табакова О М. Ионометрическое определение меди(П) в природных водах в сочетании с фотохимической минерализацией//Определение нормируемых компонентов в природных и сточных водах. М. Наука, 1987. [c.196]


Библиография для Определение в сточных и природных водах: [c.192]    [c.249]    [c.191]    [c.192]   
Смотреть страницы где упоминается термин Определение в сточных и природных водах: [c.470]    [c.470]    [c.245]    [c.4]    [c.236]   
Смотреть главы в:

Унифицированные методы анализа вод Изд2 -> Определение в сточных и природных водах

Унифицированные методы анализа вод -> Определение в сточных и природных водах




ПОИСК





Смотрите так же термины и статьи:

Вода сточная

Сточные воды



© 2025 chem21.info Реклама на сайте