Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 30. Элементы подгруппы меди

    Дайте общую характеристику элементов подгруппы меди (см. тему 23). [c.79]

    Атомы этих элементов имеют на внешнем уровне по одному 5-электрону (табл. 26). Отличие в строении атомов элементов побочной подгруппы от главной состоит в том, что на предвнешнем энергетическом уровне атомы имеют кроме 5- и р- еще и -электроны. В связи с этим элементы подгруппы меди в соединениях проявляют не только степень окисления +1, но и более высокие степени окисления. Для меди наиболее характерны соединения с высшей степенью окисления +2, а для золота - -3. Способность атомов меди и золота отдавать два и гри электрона объясняется тем, что орбитали 3с1 и 4х меди, 5(1 и б5 золота близки по энергиям. Для серебра характерны соединения со степенью окисления +1 ч [c.413]


    Побочную подгруппу элементов первой группы составляют медь, серебро и золото. Эти элементы сходны с элементами главной подгруппы тем, что они в некоторых своих соединениях имеют степень окисленности, равную -(-1. Однако медь в большинстве своих соединений имеет степень окисленности, равную +2. [c.135]

    При сопоставлении элементов обеих подгрупп I группы между теми и другими можно наметить лишь немногие черты сходства. В частности, все металлы I группы отличаются высокой электропроводностью и образуют соединения, в которых они одновалентны. Однако Li и его аналоги только одновалентны, между тем как элементы подгруппы меди способны проявлять (а в случаях Си и Аи даже предпочтительно проявляют) более высокую валентность. В этом отношении несколько ближе других элементов подгруппы меди стоит к щелочным металлам серебро. [c.417]

    Общая характеристика элементов подгруппы цинка. Электронная конфигурация (п—l)d °ns . Тем, что внешний энергетический уровень содержит два s-электрона, они сходны с элементами подгруппы ПА. Предпоследний энергетический уровень содержит 18 электронов. Этим они отличаются от элементов подгруппы ИА, в предпоследнем уровне которых 8 электронов (s p ). Если в подгруппе меди подуровень (п—еще не стабилен, то в подгруппе цинка он вполне стабилен, и d-электроны у элементов подгруппы цинка не принимают участия в химических связях. Валентность этих элементов 2, окислительное число +2 (у ртути бывает и +1). [c.361]

    Первая группа Периодической системы характеризуется тем, что в ней размещаются элементы с резко отличными свойствами. С одной стороны, это литий и натрий, а также исключительно химически активные собственно щелочные металлы, а с другой — медь и такие благородные металлы, как серебро и золото. Все они объединяются групповой аналогией. Как и в других группах, между типическими элементами, а также элементами подгрупп калия и меди соответственно наблюдается типовая аналогия. Кроме того, металлы подгруппы калия являются слоевыми аналогами. Несколько отличается химия лития как первого типического и кайносимметричного элемента 1А-группы. Кроме того, имеет место диагональная аналогия между литием и магнием. Диагональными аналогами в узком [c.303]

    К подгруппе меди относятся три элемента — медь, серебро и золото. Подобно атомам щелочных металлов, атомы всех этих элементов имеют на внешней электронной оболочке по одному электрону но предпоследняя их электронная оболочка содержит, в отличие от атомов щелочных металлов, восемнадцать электронов. Все элементы подгруппы меди — предпоследние члены декад -элементов. Однако их атомы содержат на (п - 1) -подоболочке не 9, а 10 электронов. Это объясняется тем, что структура (п — более устойчива, чем структура (п — 1)( пз . [c.533]


    ТЕМА 30 ЭЛЕМЕНТЫ ПОДГРУППЫ МЕДИ Домашняя подготовка [c.170]

    К подгруппе меди относятся три элемента — медь, серебро и золото. Подобно атомам щелочных металлов, атомы всех этих элементов имеют в наружном слое по одному электрону но предпоследний их электронный слой содержит, в отличие от атомов щелочных металлов, восемнадцать электронов. Структуру двух внешних электронных оболочек атомов этих элементов можно изобразить формулой (п—1)52(п—1)р (п—(где — номер периода, в котором находится данный элемент). Все элементы подгруппы меди — предпоследние члены декад й-элементов. Однако, как видно из приведенной формулы, их атомы содержат на (л — 1) -подуровне не 9, а 10 электронов. Это объясняется тем, что структура п—более устойчива, чем структура п— 1) 852 (см. стр. 93). [c.551]

    Константа нестойкости аммиаката [Ag(NHз)2]+ оказывается не меньше, а больше, чем константа нестойкости аммиаката [Си(МНз)21+ (сведения о константе нестойкости аммиаката одновалентного золота отсутствуют). Это можно объяснить тем, что химические связи в аммиакатах элементов подгруппы меди, находящихся в одновалентном состоянии, имеют малую степень ковалентности. Вследствие этого изменение устойчивости аммиакатов следует связывать с изменением характера электростатического взаимодействия между ионом комплексообразователя и молекулами аммиака, которое, естественно, ослаб- [c.196]

    Различия в химических свойствах между элементами подгрупп во П группе периодической системы менее резки, чем в I, но все же они довольно существенны. Вместе с тем, такие свойства этих элементов, как относительная непрочность окислов, их полупроводниковые свойства, высокий ионизационный потенциал, способность изменять степень окисления, приближают эти элементы к элементам VHI группы и подгруппы меди. Это отражается в способности некоторых соединений цинка, кадмия и ртути катализировать окислительно-восстановительные реакции — процессы окисления, гидрирования, дегидрирования и др. При переходе от кадмия к ртути каталитическая активность металла резко падает. [c.173]

    Сг), ОНИ не примут приблизительно постоянного значения. Такой ход изменения атомных радиусов объясняется двумя обстоятельствами. С одной стороны, как было отмечено в разд. 3.2, в каждом периоде периодической системы с увеличением атомного номера уменьшаются собственные размеры атома. С другой стороны, подобное увеличение атомного номера (при неизменном координационном числе) ведет к возрастанию числа валентных электронов, приходяш,ихся на один атом, и, следовательно, к увеличению прочности связи. При этом стабилизация значений атомных радиусов начиная с атома Сг объясняется, по Полингу [3.,, За, 36], тем обстоятельством, что дальнейшее увеличение числа -электронов уже не ведет к увеличению прочности связи. Отметим, наконец, характерную особенность металлов подгруппы меди. Малые значения их атомных радиусов, показывают, что в металлической фазе эти элементы нельзя рассматривать в качестве одновалентных. Зависимость прочности связи в кристалле от числа электронов, принимающих участие в связи, отчетлива сказывается на температуре плавления металлов. Как видно из рис. 9.8, [c.97]

    Европий и иттербий по своим химическим свойствам близки к барию, но сильно отличаются от металлов группы цинка. Это соответствует тому, что ионы Еи + и имеют внешнюю электронную конфигурацию 5s 5p , одинаковую с конфигурацией Ва " , но резко отличаются от внешней электронной конфигурации двухвалентных ионов цинка, кадмия и ртути ( ). Поэтому подгруппа европия должна быть расположена рядом с подгруппой щелочноземельных металлов, справа от нее. Но вместе с тем она должна быть удалена от гораздо более электроотрицательных элементов подгруппы цинка. Соответствующее небольшое смещение группы европия вправо по направлению к III группе представлено в табл. 11. Оно идентично смещению подгрупп металлов с заполненными -подоболочками меди и цинка к третьей группе, но меньше по величине. [c.96]

    Химические свойства металлов. Металлы более или менее легко отдают электроны из внешнего слоя, образуя положительно заряженные ионы. В отличие от неметаллов, атомы металлов не присоединяют электроны с образованием отрицательно заряженных ионов. Это дает основание называть их электроположительными элементами и восстановителями. Способность отдельных металлов к отдаче электронов проявляется не в одинаковой степени. Чем меньше электронов на внешнем энергетическом уровне атома, тем легче он отдает электроны при химических реакциях и соответственно больше проявляет восстановительную способность. Так, металлы главной подгруппы I группы, атомы которых имеют на внешнем энергетическом уровне один электрон, являются наиболее энергичными восстановителями. Наиболее ярко способность атомов металлов к отщеплению электронов проявляется в реакциях взаимного вытеснения металлов из растворов их солей. Например, железо легко растворяется в растворе сульфата меди, восстанавливая ионы меди  [c.391]


    Высшая положительная валентность элементов обычно отвечает номеру группы, причем в высших оксидах и гидроксидах кислотный характер растет слева направо по периодам, а основной — ослабевает. У фтора вообще не обнаружена положительная валентность в соединениях он всегда одновалентен. Положительная валентность кислорода проявляется только в соединениях с фтором и равна двум. Железо, кобальт и никель проявляют высшую валентность соответственно шесть, четыре и три, палладий — четыре, родий, иридий и платина — шесть, бром и астат — пять. У некоторых благородных газов высшая положительная валентность достигает восьми (ХеРв). У элементов подгруппы меди в образовании валентных связей могут участвовать с1-злектроны предпоследнего уровня, поэтому их высшая положительная валентность оказывается больше номера группы — бывает +1, +2, +3. Эти элементы являются неполными аналогами элементов главной подгруппы I группы и вместе с тем продолжают развитие свойств элементов семейства железа и платиновых металлов, к которым они вплотную примыкают в системе элементов. [c.79]

    Вопрос, поставленный Лясковским, имел известное отношение к сообщению, сделанному Менделеевым за два дня до того (23 августа 1869 г.), на втором заседании того же Химического отделения 2-го съезда русских естествоиспытателей. Приведенная в этом сообщении таблица элементов (см. ст. 3, стр. 32 в основном томе) давала объяснение и тем фактам, которые были приведены Лясковским в самом деле, металлические свойства элементов (соответственно — основные свойства их окислов) в главных подгруппах возрастают по мере увеличения атомного веса, а неметаллические свойства (соответственно — кислотные свойства окислов) при этом падают. Для побочных же подгрупп зависимость носит обратный характер, по крайней мере для левой части таблицы, приведенной в ст, 3. Таким образом, Менделеев имел возможность уже на заседании 25 августа объяснить с помощью своей системы элементов, почему более тяжелый цезий активнее более легкого рубидия и в то же время более тяжелый иод менее активен, чем более легкий бром, а бром менее активен, чем еще более легкий хлор. Вместе с тем можно было объяснить факты, указанные Бекетовым, тем, что члены побочных подгрупп обнаруживают обратную зависимость, вследствие чего более легкая медь активнее более тяжелого серебра и более легкий магний активнее более тяжелого цинка. Спустя два года (в ст. 7) Менделеев писал по аналогичному поводу, что в его системе элементов отразилось и то рациональное, что содержалось в электрохимическом учении, сторонником которого выступил, в частности, Лясковский. В рукописи ст. 7 Менделеев писал .. . периоды.. . начинаются резкими щелочными металлами, а кончаются резкими же по химическому характеру галоидами. Элементы этих групп издавна, еще электрохимиками, ставились по концам системы элементов, и это совпадение рационального раснределения элементов по их атомному весу с тем, какого достигли, руководствуясь соображениями совершенно иного рода, я выставляю здесь как одно из ясных доказательств естественности закона периодичности (Научный архив, т. I, стр. 376—378). [c.454]

    Элементы побочной подгруппы I группы периодической системы медь, серебро и золото сходны с элементами главной подгруппы I группы тем, что они в некоторых своих соединениях одновалентны. Эти элементы, однако, выступают в своих соединениях и в более высоких валентных состояниях. Одновалентное состояние является наиболее устойчивым только у серебра, которое лишь как исключение двух- и трехвалентно. Наиболее устойчивая валентность меди — два, а золота — три. Золото, серебро и медь являются единственными элементами, которые могут давать соединения, где они проявляют валентность выше номера группы периодической системы, к которой принадлежат. [c.680]

    Развиваемые представлеиия о доиорно-акцепторной связи можно использовать при рассмотрении свойств ряда веществ. Известно, например, что энергия связи в молекулах -элементов подгруппы меди ua, Aga и Aua Превышает примерно в 4—5 раз энергию связи за счет s-электронов в молекулах Ка, Rba, sa. Такую повышенную прочность объясняют тем, что в молекулах ua, Aga и Aua (Mj) кроме обычной связи по обменному механизму с участием s-электро-иов имеет место донорно-акцепторная связь, которая образуется неподеленной парой d-электронов одного атома и свободной р-ор-Смталью другого атома. Такую донорно-акценторную связь часто называют дативной связью. В молекулах Си а, Aga и Ап а каждый атом (М) выступает в роли донора или акцептора электронов  [c.108]

    Первая группа системы характеризуется тем, что в пей рг13 1еща-ются элементы с резко отличными свойствами. С одной стороны, это литий II натрий, а также исключительно химически активные собственно щелочные металлы, а с другой — медь и такие благород])ые элементы, как серебро и золото. Все оии объединяются групповой аналогией. Как и в других группах, между типическими элементами, а также элементами подгрупп калия и меди соответственно наблюдается типовая аналогия. Кроме того, металлы подгруппы калия являются слоевыми аналогами. Несколько отличается химия лития вследствие диагональной аналогии между литием и магнием. Диагональными аналогами в узком смысле являются натрий и кальций. С металлохимической точки зрения между элементами 1А- и 1В-групп также имеется существенное различие. Для металлов 1А-груипы вовсе не характерно образование широких областей твердых растворов с металлами других групп, а элементы подгруппы меди, наоборот, дают непрерывные илп ограниченные твердые растворы с широкими областями гомогенности. В то же время и те и другие металлы ие образуют фаз внедрения. [c.111]

    Элементы подгруппы меди малоактивны, так как их валентные электроны расположены ближе к ядру и сильнее им удерживаются. Поэтому данные металлы менее реакционноспособны, чем щелочные, причем уменьшение химической активности и усиление кислотных свойств соединений происходит от меди к золоту. Это объясняется тем, что между серебром и золотом находятся лантаноиды, у которых происходит заполнение глубинной 4 /-оболочки. В этом случае при одинаковом числе эл ектронных слоев увеличение заряда ядра усиливает притяжение электронов к нему и вызывает постепенное уменьшение радиусов атомов и ионов — лантаноидное сжатие поэтому гдц = гди = 1,44 А. [c.239]

    От этого недостатка свободна так называемая укороченная периодическая таблица химических элементов. Она построена из неукороченной" таблицы с иГзъятием из нее лантаноидов и актиноидов и переносом концов восемнадцатиэлементных периодов (по восемь элементов) под начало этих же периодов. Таким образом, медь (Си), серебро (Ag) и золото (Аи) попадают под соответствующие щелочные элементы — медь под калий, серебро под рубидий и золото под цезий. Аналогично дело обстоит и с остальными перенесенными элементами. Поскольку до переноса они располагались в концах восемнадцатиэлементных периодов, то естественно, что они по своим свойствам отличаются от тех элементов, под которые попадают после переноса. Поэтому перенесенные элементы располагают не точно под теми элементами той группы, в которую они попадают, а несколько сбоку. Таким образом, возникают группы элементов, расположенных в вертикальных столбцах, и каждая группа состоит из двух подгрупп главной и побочной. Так, в первую группу попадают щелочные металлы и подгруппа меди (Си, Ад, Аи). Во вторую группу входят бериллий, магний и щелочноземельные металлы, а также элементы подгруппы цинка (2п, С(1, Hg), затем в третью группу — подгруппы бора (В, А1, Оа, 1п, Т1) и подгруппа скандия (5с, У, Ьа, Ас) и т. д. Совершенно естественно, что в седьмую группу попадают галогены (Р, С1, Вг, I, А1) и столь отличные от них по свойствам элементы подгруппы марганца (Мп, Тс, Ке). Особый интерес вызывает к себе восьмая группа. Очевидно, в нее должны входить инертные газы и элементы подгруппы железа (Ре, Ки, Об). Вне какой-либо группы остаются элементы кобальт и никель, родий и палладий, иридий и платина. Ранее считали, что железо, кобальт, никель и платиновые металлы (рутений, родий, палладий и осмий, ири- нй, платина) образуют восьмую группу, а инертные газы вы- [c.11]

    В III группе термохимические данные очень ярко доказывают инверсию ветвей для элементов главной подгруппы и переходных металлов, обусловленную тем, что заполнение -оболочки предшествует достройке jo-уровня у галлия, индия и таллия. В I и II группах щелочные и щелочноземельные металлы располагаются слева от металлов подгруппы меди и цинка, а в третьей группе элементы главной подгруппы — галлий, индий и таллий — перемещаются вправо и располагаются правее -переходных металлов, т. е. III6 группы — скандия, иттрия, лантана и актиния. [c.113]

    Ар-рази (1Х-Х вв.) — автор Книги тайн и Книги тайны тайн . Тайну тайн Ар-рази начинает представлениями о мире. В основу химического превращения вещества положены пять принципов творец, душа, материя, время, пространство. Между тем эти принципы, предполагающие материальную непрерывность, снимают на вещественном уровне дискретность,, ибо все вещи, согласно Рази, состоят из нeдeли п.Ix, вечных и неизменных элементов-частиц (в некотором роде атомов) и пустот между ними. Эти частицы обладают размерами. Но у него же и Аристотелевы начала, выступающие скорее как свойства, функционально детерминированы размером атомов и пустот между ними. Классификация веществ у Ар-рази — свидетельство точных, наблюдений веществ. Прежде всего все вещи подлунного мира разделены на три группы землистые (минеральные), растительные, животные. Минеральные вещества, в свою очередь, подразделены на подгруппы духи , или летучие спирты (ртуть, нашатырь, аурипигмент, реальгар и сера) тела (металлы золото, серебро, медь, железо, олово, свинец и харасин — возможно, цинк, или китайское железо ) камни (марказит, марганцевая руда, бурый железняк, белый мьппьяк, сернистый свинец, сернистая сурьма, слюда, гипс, стекло). [c.39]

    Элементы побочных подгрупп составляют ту часть школьного курса, которая, в соответствии с программой средней школы, на самом деле практически не изучается. Так, при попытке автора утвердить связанные с железом вопросы в билетах для выпускников 9 класса реакция была такова Железо Ну это же сложно. .. У нас базовый курс. .. 0 том, что в школьных учебниках Вы не найдете разбора свойств хрома и марганца и описания характера протекания реакций с перманганатом кгилия в зависимости от кислотности среды, не стоит даже и вспоминать. На этом основании всем абитуриентам и интересующимся химией настоятельно рекомендуется разобраться с химическими свойствами цинка, ртути, железа, меди, серебра и т. д. (см. название раздела) с помощью дополнительной литературы и еще раз вспомнить тему Окислительно-восстановительные реакции . На вступительных экзаменах эти знания требуются как само собой разумеющиеся. [c.133]


Смотреть страницы где упоминается термин Тема 30. Элементы подгруппы меди: [c.569]    [c.569]    [c.632]    [c.133]   
Смотреть главы в:

Практикум по неорганической химии -> Тема 30. Элементы подгруппы меди




ПОИСК





Смотрите так же термины и статьи:

Меди подгруппа

Медь—элемент

Тема 5. Элементы V А подгруппы

Хай-Темя

Элементы подгруппы меди (подгруппа



© 2025 chem21.info Реклама на сайте