Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микробиологические основы процесса

    ЭВМ служит техническим средством эффективно реализующим принципы кибернетического подхода к анализу, синтезу и управлению биотехнологическими процессами. При этом разработка и внедрение автоматизированных систем управления биотехнологическими процессами является важным этапом технического перевооружения и модернизации действующих биохимических производств, а также создания на основе систем автоматизированного проектирования новых высокоинтенсивных предприятий по выпуску продуктов микробиологического синтеза. [c.6]


    Клетка. Основу биотехнологической системы составляют процессы микробиологического синтеза, направленные на получение разнообразных целевых продуктов биосинтеза — белков, аминокислот, липидов и др. Важную роль играют также процессы биологической очистки, направленные на утилизацию органических и неорганических соединений растущими на данном субстрате микроорганизмами. Индустриальное использование процессов культивирования микроорганизмов связано со способностью клеток в определенных условиях окружающей среды расти и размно- [c.7]

    В книге изложены основы микробиологического получения белковых и хлебопекарных дрожжей, бактериальных удобрений, вакцин, липидов, полисахаридов, спиртов, органических кислот, аминокислот, витаминов, антибиотиков, ферментов. Показаны принципы микробиологической трансформации органических соединений и сущность очистки сточных вод. Эти вопросы рассмотрены в технологическом аспекте с краткой характеристикой биохимии и микробиологии каждого процесса. [c.2]

    Математические модели кинетики роста микроорганизмов, образования продуктов биосинтеза и утилизации субстратов отличаются от известных моделей химической кинетики. В основу большинства используемых моделей роста микроорганизмов положены уравнения ферментативной кинетики микробиологических процессов [1—4, 23, 27]. Однако, учитывая значительное число протекающих в клетках стадий биохимических ферментативных реакций, применение законов ферментативной кинетики носит в большинстве случаев формальный характер. Отличительной особенностью большинства моделей является использование в качестве основного параметра модели численности или концентрации микробной популяции. Именно большая численность микробных популяций позволяет широко применять при моделировании кинетики роста детерминистический подход, опирающийся на хорошо развитый аппарат дифференциальных уравнений. В то же время известны работы, в которых используются стохастические модели кинетики [25]. Среди них распространены работы, основанные на простой концепции рождения и гибели , что в математическом аспекте позволяет применять аппарат марковских процессов. В более сложных моделях микробная популяция представляется Б виде конечного числа классов, каждый из которых ха- [c.53]


    В Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года указана важнейшая проблема в нефтеперерабатывающей промышленности ...обеспечить дальнейшее углубление переработки нефти и существенное увеличение выработки моторных топлив, а также сырья для химической, нефтехимической и микробиологической промышленности . Повышение эффективности использования нефти в процессе ее первичной и вторично переработки прежде всего связано с углублением отбора нефтепродуктов от их потенциального содержания. Эта задача должна решаться преимущественно путем интенсификации и реконструкции действующих установок первичной и вторичной переработки нефти. Основой реконструкции являются прежде всего надежные проверочные расчеты, позволяющие уточнить оптимальные параметры того или иного процесса и определить запас по производительности имеющихся аппаратов и оборудования. Большое значение в обеспечении надежной работы технологических установок имеет подготовка газовых потоков (удаление сероводорода, осушка) для дальнейшей их переработки в качестве углеводородного сырья или использования в технологических процессах (например, циркулирующий водородсодержащий газ, инертный газ). [c.6]

    Ерошин В. К. Основы материально-энергетического баланса роста микроорганизмов.— В кн. Лимитирование и ингибирование микробиологических процессов. Пущино, 1980, с. 34—54. [c.274]

    Микробиологические основы процесса [c.76]

    Дан анализ биохимического производства, рассматриваемого с позиций системного подхода как сложная иерархическая система (БТС) с целым рядом взаимосвязанных подсистем и элементов, обеспечивающих преобразование материальных и энергетических потоков в процессе переработки исходного сырья в целевые продукты микробиологического синтеза. Рассмотрены вопросы выбора глобального и локальных критериев эффективности, а также применения принципов многоуровневой оптимизации при анализе БТС и ее подсистем. Приведены примеры построения математических моделей типовых технологических элементов, составляющих БТС, даны алгоритмы их расчета на ЭВМ и методы анализа надежности функционирования в системе. Детально исследованы условия функционирования основных подсистем БТС ферментации , разделения биосуспензий , биоочистки , рассмотрены принципы их структурного анализа и оптимизации. Рассмотрена иерархическая структура управления биохимическими системами и показана эффективность использования управления на основе ЭВМ в задачах оптимизации процессов биохимических производств. [c.2]

    Наконец, наиболее важную и многообразную группу составляют химические процессы, связанные с изменением химического состава и свойств вещества, скорость протекания которых определяется законами химической кинетики. К сожалению, до сих пор еще не удалось создать строгую научную классификацию этих процессов. Это оказалось делом очень трудным. Часть химических процессов классифицируется по принципу получаемых продуктов или отраслям производства (минеральные кислоты, щелочи, соли, минеральные удобрения, металлы, силикаты, высокомолекулярные соединения, пластические массы, каучуки и резины, химические волокна, целлюлоза и бумага, органические красители, клеи, лаки и краски, сахара, спирты, жиры и т. п.), часть — по принципу общности процессов производства (электрохимические процессы, электротермические, микробиологический синтез, процессы брожения и т. п.), часть — по принципу общности исходного сырья (химическая технология нефти, синтезы на основе окиси углерода, олефиновых углеводородов, ацетилена, ароматических углеводородов и т. п.). [c.137]

    Книга, несомненно, окажется полезной ученым-биохимикам, преподавателям вузов, аспирантам и студентам — всем тем, кто интересуется физико-химическими основами процессов жизнедеятельности. Много ценного сумеют в ней почерпнуть и специалисты в области медицины и сельскохозяйственной науки, работники микробиологической промышленности и других смежных отраслей производства, использующие подходы и методы современной биохимии. Представляемая читателю книга будет способствовать развитию и распространению в нашей стране биохимических знаний. [c.6]

    Изложены основы нового системного подхода к анализу, расчету и моделированию нроцессов химической, нефтехимической и микробиологической промышленности. Введено обобщающее понятие физико-химической системы, определена стратегия анализа и синтеза таких систем и сформулированы принципы построения математического описания отдельного химико-технологического процесса как сложной кибернетической системы. Приведены многочисленные примеры. [c.2]

Рис. 3-1. Микробиологический процесс синтеза белка на основе метанола. Рис. 3-1. <a href="/info/1807615">Микробиологический процесс синтеза</a> белка на основе метанола.

    Правильная научная классификация может быть создана только при учете геологических и химических особенностей, чтобы по геологическим данным предусмотреть свойства углей, а по химическим характеристикам установить геологические условия, при которых образовано данное месторождение. Кроме того, необходимы микробиологические и биохимические исследования, которые позволили бы синтезировать в лабораториях гуминовые вещества, раскрыть природу процессов, приводящих к возникновению угольных месторождений. Только при этих условиях можно построить единую всеобъемлющую научную классификацию на геохимической основе. [c.61]

    В СССР научные основы микробиологической трансформации органических соединений разрабатываются в Институте биохимии и физиологии микроорганизмов АН СССР. Этим институтом разработаны технологии многих промышленных процессов, применяемых в основном для получения медикаментов. Ниже приводятся примеры превращения некоторых веществ при использовании трансфс рмирующей способности микроорганизмов. [c.210]

    Микробиологическая депарафинизация (МБД) предназначена для получения низкозастывающих нефтяных фракций как топливных, /так и масляных. Процесс депарафинизации при помощи микроорганизмов основан на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения, в качестве единственного источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления парафиновых углеводородов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового белка. Производство низкозастывающих продуктов осуществляется в две стадии собственно микробиологическая депа рафинизация и выделение депарафинизата из стойкой водно-эмульсионной смеси с микробной массой. [c.233]

    На рис. 3-1 приведена схема микробиологического процесса на основе метанола. [c.342]

    В основу машинной технологии сыров положены закономерности комплекса биохимических, микробиологических и физико-химических процессов созревания молока, сливок и сыров. [c.1114]

    Как видно из представленных данных, наиболее массовым в стране является летний сорт топлива. Доля зимнего и арктического сортов в общем дизельном фонде составляет всего 13,5 %, что примерно только на половину удовлетворяет растущие потребности страны в низкозастывающем виде топлива, связанные с необходимостью интенсивного освоения природных богатств Сибири, Дальнего Востока и Крайнего Севера. В настоящее время основным способом получения низкозастывающих дизельных топлив является облегчение их фракционного состава путем снижения температуры конца кипения до 300-320 °С (против 360 °С для летнего сорта), что связано с существенным ограничением их ресурсов. Относительно небольшая часть таких топлив вырабатывается на основе цеолитной и карбамидной депарафинизации. Денормализаты цеолитной депарафинизации имеют хорошие низкотемпературные свойства (температура застывания - 45-5- -50 °С, температура помутнения - 35-ь50 °С), поэтому они преимущественно используются в качестве зимних и арктических топлив. При карбамидной депарафинизации не полностью удаляются высокоплавкие парафины, поэтому денормализаты этого процесса имеют при температуре застывания -35°С и ниже температуру помутнения лишь -11 °С вместо требуемых -25 или -35 °С. Необходимо обратить внимание на нерациональное вовлечение де-нормализатов в летнее дизельное топливо, что обусловлено географией размещения установок Парекс и отсутствием резервуаров необходимых объемов для хранения и последующего использования денормализатов для производства зимних сортов топлив. Для более полного удовлетворения потребностей в зимних и арктических сортах дизельных топлив и одновременно в жидких парафинах - ценном дефицитном сырье для нефтехимии и микробиологического синтеза - в 80-е гг. в нашей стране ускоренными темпами строились установки депарафинизации, особенно типа Парекс . Однако позже в связи с принятием во многих странах мира, в том числе в бывшем СССР, законодательных актов, запрещающих использование жидких нефтяных парафинов для производства белково-витамин- [c.652]

    Рассмотрим гидродинамические модели физико-химических и термических методов увеличения нефтеотдачи пластов. Моделирование газовых методов (вытеснение углеводородными или неуглеводородными газами) достаточно хорошо изучено и, по существу, проблема состойт в основном в технико-экономической целесообразности процесса в условиях различных месторождений. Что касается микробиологических процессов, основой которых является воздействие на пластовый флюид специально закачиваемыми микроорганизмами, то гидродинамические модели начинают лишь создаваться. Большое внимание уделяется механизму этого процесса. [c.301]

    Получение -каротина и витамина Важное место в обмене веществ у животных занимает р-каротин, который в печени превращается в витамин А (ретинол). В организме человека и животных каротины не образуются. Основные источники Р-каротина для животных — растительные корма человек получает Р-каротин также из продуктов животного происхождения. Р-Каротин можно вьщелить из ряда растительных объектов — моркови, тыквы, облепихи, люцерны. В начале 60-х годов XX в. разработана схема микробиологического синтеза Р-каротина, которая стала основой про-мьпыленного способа его получения. Установлено, что многие микроорганизмы — фототрофные бактерии, актиномицеты, плесневые грибы, дрожжи — синтезируют каротин. Характерно, что содержание р-каротина у микроорганизмов во много раз превышает содержание этого провитамина у растений. Так, в 1 г моркови присутствует всего 60 мкг Р-каротина, в то время как в 1 г биомассы гриба В1апе51еа Мзрога — 3 — 8 тыс. мкг. Разработаны опытные установки как периодического, так и непрерывного действия для синтеза Р-каротина, основной недостаток которых — высокая стоимость сырья и большая длительность процесса. [c.57]

    Важнейшая проблема в нефтеперерабатывающей промышленности является обеспечение далы1ейшего углубления переработки нефти и существенное увеличение выработки моторных топлив, а также сырья для химической, нефтехимической и микробиологической промышленности. Повышения эффективности использования нефти в процессе ее перн ичной и вторичной переработки, прежде всего, связано с углублением отбора нефтепродуктов от их потенциального содержания. Эта задача должна решаться преимущественно путем интенсификации и рекопст15укции действующих установок первичной и вторичной переработки неф ти. Основой реконструкции являются, прежде всего, надежные проверочные расчеты, позволяющие уточнить оптимальные параметры того или иного процесса и определить запас по производительности имеющихся аппаратов и оборудования. [c.7]

    Органическое вещество отмерших организмов фито- и зоопланктона, а также и более организованных форм в водной толще и в донных илах испытывает интенсивные преобразования. Интенсивная микробиологическая деятельность сопровождается распадом первичного субстрата и образованием бактериальной биомассы. В результате содержаниг белковоподобных соединений уменьшается в 100—200 раз, свобод ных аминокислот в 10—20 раз, углеводов в 12—20 раз, липидов в 4—8 раз. Одновременно с этим соверншются процессы поликондеисации, полимеризации непредельных соединений и др. Возника от несвойственные биологическим системам вещества, составляющие основу органической части нефти—керогена. Происходит полимеризация жирных кислот, гидроксикислот и непредельных соединений с переходом образующихся продуктов уплотнения в нерастворимые циклическую и [c.32]

    Промышленный процесс карбамидной депарафинизации, в основе которого лежит образование комплексов карбамида, обеспечивает, с одной стороны, улучшение качества моторных топлив и минеральных масел, а с другой стороны, позволяет во много раз увеличить производство мягкого (жидкого) парафпна — сырья для производства синтетических жирных кислот, синтетических жирных спиртов, моющих средств и т. д., а также сырьевой основы промышленности микробиологического синтез а — производства белково-витаминных концентратов на базе нефтяных углеводородов. Поэтому разработка теории карбамидной депарафинизации, а также создание и совершенствование соответствующих промышленных установок имеют большое значение [1, 2]. [c.6]

    В связи со сказанным актуальным является разработка научных основ биосорбции и биодеградации вредных органических веществ, содержащихся в сточных водах. В предлагаемом подходе к рассмотрению процесса утилизации фенолов используется два основных этапа. Первый этап - сорбция фенолов с применением в качестве сорбентов торфа и отходов микробиологических производств а также методов интенсификации этого процесса путем воздействия различных физических факторов (акустические колебания). Второй этап - последующая дефадация сорбента с извлеченными фенолами с использованием биотехнологических приемов. Комплексное использование процессов аккумуляции вредных веществ с последующей их деградацией является перспективным подходом, позволяющим создать научную основу для новых инженерных решений. [c.171]

    Лидирующее положение в этом большом арсенале химических средств и методов для ликвидации нефтезагрязнения занимают диспергирующие агенты, которые представляют собой смесь растворителей и поверхностно-активных веществ (ПАВ). Благодаря особенностям химической структуры и способности понижать поверхностное натяжение на границе раздела нефти с водой, ПАВ стабилизируют нефтяные капли в воде и таким образом эмульгируют и диспергируют нефть. При этом устраняется возможность образования нефтяных пленок на поверхности моря или пляжа, и резко ускоряются процессы химического и микробиологического распада нефти. Некоторые препараты на основе ПАВ обладают многофункциональными свойствами как для диспергирования нефти, так и ее локализации и удаления. Некоторые из них синтезируются уже в промышленных масштабах для применения в аварийных ситуациях. Однако полученный за последние 30 лет опыт практического использования таких препаратов, в том числе при ликвидации последствий разливов нефти, показал, насколько серьезны трудности эффективного использования хи- [c.128]

    Благодаря изучению физиологии и генетики микроорганизмов — продуцентов врггаминов и выяснению путей биосинтеза каждого из них создана теоретическая основа для получения микробиологическим способом практически всех известных в настоящее время витаминов. Однако с помощью энзимов целесообразнее производить лишь особо сложные по строению витамины Bj, В,2, -ка-ротин (провитамин А) и предшественники витамина D. Остальные витамины либо выделяют из природных источников, либо синтезируют химическим путем. Витамины используются в качестве лечебных препаратов, для создания сбалансированных пищевых и кормовых рационов и для интенсификации биотехнологических процессов. [c.53]

    В основу классификации оборудования для солодоращеиия и получения ферментативных препаратов положены признаки, характеризующие различные физиологические, биохимические, ферментативные, микробиологические и другие процессы, в соответствии с которыми оборудование можно разделить на следующие группы  [c.1021]

    На протяжении эмпирического периода развития (середина XVII—конец XVIII вв.) органическая химия по определению знаменитого шведского химика Й. Берцелиуса была химией растительных и животных веществ . За это время произошло накопление большого фактического материала, но еще не возникло теоретических, обобщающих представлений. Основной причиной, побуждающей к изучению органических веществ, являлась необходимость в их практическом использовании (получение из природных источников красителей, масел, смол, жиров). Известные с древних времен процессы изготовления вина из виноградного сока, хмельного напитка из меда служат примерами использования брожения — одного из микробиологических процессов, которые не потеряли значения и в настоящее время, а получив дальнейшее развитие, составили основу микробиологического производства многих лекарственных веществ и витаминов (антибиотики, витамин С). [c.10]

    Мак Карти разработал теоретический метод определения стехиометрии микробиологических процессов, основанный на вычислении э и /с [22]. В основе этого метода лежит составление баланса основного энергосодержащего вещества клетки — аденозинтрифосфата (АТФ). Во многих реакциях, протекающих с выделением энергии, образуется АТФ, в большинстве реакций, протекающих с поглощением энергии, АТФ расходуется  [c.302]

    В данном пособии излагаются основы водной химии и микробиологии с учетом той общехимической подготовки, которая имеется у студентов химико-технологических вузов и химических факультетов университетов. Оно состоит из двух частей — химической и микробиологической, в каждой из которых, помимо теоретических основ процессов самоочищения водоемов и очистки сточных вод, значительное внимание уделено методам химического и санитарно-бактериологического контрол состава воды. [c.2]


Библиография для Микробиологические основы процесса: [c.599]   
Смотреть страницы где упоминается термин Микробиологические основы процесса: [c.211]    [c.219]    [c.388]    [c.190]    [c.5]    [c.212]    [c.71]    [c.212]    [c.212]    [c.101]    [c.380]    [c.374]    [c.6]    [c.431]   
Смотреть главы в:

Биотехнология -> Микробиологические основы процесса

Биотехнология - принципы и применение -> Микробиологические основы процесса




ПОИСК





Смотрите так же термины и статьи:

Основы процессов



© 2025 chem21.info Реклама на сайте