Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы элементного анализа органических соединений

    Установив точную массу иона, находят его элементный состав. Чем выше точность определения массы, тем выше вероятность различения изобарных ионов и точность определения их элементного состава. Таким образом, масс-спектрометрия высокого разрешения может служить эффективным методом элементного анализа органических соединений. [c.11]


    Немецкий ученый Ю. Либих (1803—1873) предложил классический метод элементного анализа органических соединений, применяемый и в настоящее время, а также метод определения кислорода в газах с помощью пирогаллола. [c.8]

    Применение методов количественного анализа привело к открытию в начале XIX столетия стехиометрических законов (постоянства состава, кратных отношений и паев). Экспериментальное подтверждение этих законов благодаря трудам английского химика Д. Дальтона (1766—1844) окончательно утвердило атомную теорию в химии. Введение ее стимулировало дальнейшее развитие количественного анализа, так как возникла необходимость возможно более точного определения атомных весов элементов. Большие заслуги в этой области принадлежат знаменитому шведскому химику И. Берцелиусу (1779—1848), который определил весьма точно (для того времени) атомные веса 45 элементов, разработал много новых методов количественных определений и усовершенствовал старые. В частности, Берцелиусом был разработан метод элементного анализа органических соединении, в дальнейшем усовершенствованный Ю. Либихом (1803—1873) и други.ми учеными. В 1824—1848 гг. Ж- Гей-Люссак (1778—1850) разработал титриметрический метод количественного анализа, получивший в середине XIX столетия дальнейшее развитие. [c.34]

    И. Берцелиус был одним из основоположников органической химии, возникшей в первые десятилетия XIX в. Будучи представителем химико-аналитического периода, Берцелиус разработал один из методов элементного анализа органических соединений, установил состав и предложил на основе электрохимической теории конституцию ряда веществ, определил их атомные веса (т. е. относительные веса сложных атомов). [c.8]

    МЕТОДЫ ЭЛЕМЕНТНОГО АНАЛИЗА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.192]

    Методы элементного анализа органических соединений 193 [c.193]

    Методы элементного анализа органических соединений на содержание азота [c.186]

    В монографии отражено современное состояние аналитической химии азота и его соединений, обобщен накопленный материал по идентификации, выделению и количественному определению различных химических форм азота при анализе природных и промышленных объектов. Наибольшее внимание уделяется физико-химическим экспрессным методам, особенно методам определения азота в металлах, природных водах, атмосфере и т. д. Приведены методы элементного анализа органических соединений на содержание азота. В связи со спецификой элемента в монографию введена глава по газометрическим методам определения азота. Рассматриваются вопросы изотопии, масс-спектрометрии азота в плане аналитической химии. Наиболее широко используемые методики определения даются полностью. [c.308]


    Абсолютное большинство коммерческих анализаторов предназначено для определения С, Н и N. Со временем их стали применять для определения О и 5. Особое внимание уделяли разработке условий определения азота в биологических материалах с целью замены классического метода Кьельдаля. Развитие инструментальных методов элементного анализа органических соединений освещалось в обзорных статьях [48, 49] и монографиях [3, 6, 7, 10]. Поэтому мы приведем лишь краткий обзор анализаторов, выпускаемых промышленностью и широко применяемых на практике. [c.33]

    Определение азота окислительным разложением в инертной> атмосфере при высокой температуре за счет кислорода окислителя является одним из наиболее универсальных методов элементного анализа органических соединений. Метод, предложенный Дюма в 1830 г., имеет множество модификаций, но до настоящего времени не утратил своего главенствующего положения в элементном анализе. [c.127]

    Простейший метод разложения проб с окислением — прокаливание на воздухе в открытых чашках или тиглях при 500—600 °С. Такой способ используют при определении неорганических компонентов в органических материалах, например примесей металлов в биомассах и пищевых продуктах. При определении элементов в виде летучих продуктов окисления, особенно при элементном анализе органических соединений, сжигают пробу в токе кислорода или воздуха. Очищенный, сухой кислород смешивают при этом с инертным газом-носителем (азот, гелий и т.д.). [c.75]

    Одновременно развивались и укреплялись методы количественного элементного анализа органических соединений. [c.10]

    Гравиметрические методы постепенно уступают место физикохимическим и физическим методам анализа, особенно в области исследований. Да и в практике химического анализа доля гравиметрических методов неуклонно уменьшается. Существенно, однако, что процессы осаждения и соосаждения привлекают внимание в связи с их использованием для разделения и концентрирования элементов, причем не только в аналитической химии. Кроме того, гравиметрические методы играют большую роль в элементном анализе органических соединений. [c.46]

    Этот метод используется как прн качественном, так и при количественном элементном анализе органических соединений. [c.63]

    Элементный анализ органических соединений дает возможность узнать, из атомов каких элементов состоит молекула данного органического соединения. Однако эти данные недостаточны для определения структуры вещества. Эта задача может быть решена с помощью функционального анализа вещества, при котором используется специфическая реакционная способность отдельных группировок атомов (=С=0 —СООН —ОН и др.). В функциональном анализе применяются химические, физические и физикохимические методы исследования. Наибольшее значение в настоящее время приобретает спектроскопия в инфракрасной и ультрафиолетовой области, ядерный магнитный резонанс, масс-спектрометрия. На основании анализа ИК-, УФ- и ПМР-спектров можно судить о наличии тех или иных функциональных групп в данном веществе и установить его строение. Однако химический качественный анализ на функциональные группы в настоящее время не потерял значения. Для качественных проб используются такие реакции, которые имеют наибольшую избирательность и чувствительность. [c.197]

    Применение методов сжигания Таблица 28-2 в трубке для элементного анализа органических соединений  [c.234]

    Элементный анализ органических соединений может выполняться различными методами. Классическими являются методы Кьельдаля и Дюма. Большое внимание в последние годы уделяется разработке и использованию методов микро- и полумикро-онределения азота и применению для этих целей специальных автоматических приборов, чаще всего основанных па применении газо-жидкостной хроматографии. [c.178]

    Интенсивное развитие химии элементоорганических соединений, синтез обширных классов органических соединений бора, кремния, фосфора, фтора и других неметаллов и металлов, а также многоэлементных соединений с несколькими гетероэлементами в молекуле потребовали разработки быстрых, достаточно универсальных, а главное, точных и надежных методов определения элементов. Одним из таких методов является абсорбционная спектрофотометрия. Спектрофотометрические методы получили широкое распространение в неорганическом анализе [254, 278—287]. Однако работ, посвященных применению этих методов для микроанализа органических соединений, мало. Литература по анализу многих элементоорганических соединений вообще отсутствует. Между тем спектрофотометрические методы отвечают жестким требованиям элементного анализа органических соединений благодаря таким особенностям, как 1) высокая чувствительность, позволяющая работать с миллиграммовыми навесками вещества в широком диапазоне концентраций определяемого элемента 2) большая избирательность, позволяющая проводить определение одного или нескольких элементов в присутствии большого числа других элементов 3) возможность получения результатов, характеризующихся высокой воспроизводимостью и правильностью. Наконец, если учесть большую производительность при выполнении серийных анализов, доступность и дешевизну реактивов и приборов, то целесообразность применения спектрофотометрии для анализа элементоорганических соединений делается очевидной. [c.159]


    Рациональный и элементный анализ органических соединений методом газовой хроматографии после каталитического гидрирования. [c.95]

    Определение элементного состав нефти проводится общими методами для анализа органических соединений  [c.5]

    Определение элементного состава нефтей проводится общепринятыми методами анализа органических соединений, в частности углерод и водород — сожжением, по Либиху, или в калориметрической бомбе, азот, — по Дюма, сера, — по Кариусу, а кислород, — по разности, причем на процент его содержания ложатся все ошибки опыта. [c.76]

    При выполнении элементного анализа органические вещества минерализуют , т.е. разлагают таким образом, чтобы углерод превратился в СО2, водород — в Н2О, азот — в N2, NN3 или ионы СМ и т. п. Дальнейшее определение проводят обычными методами аналитической химии. В современных методах количественного анализа используются навески порядка 2—5 мг. Молекулярная формула органического соединения может быть установлена по данным масс-спектрометрии, обработанным ЭВМ. [c.246]

    Методы элементного анализа полимеров, как и других органических веществ, основаны на предварительном разложении их в атмосфере кислорода, аммиака, диоксида углерода или инертных газов до стабильных конечных продуктов, пригодных для дальнейшего химического или физико-химического анализа. Чаще других при анализе высокомолекулярных соединений проводят сжигание в атмосфере чистого кислорода. В результате сгорания сополимеров, состоящих только из атомов углерода, водорода и кислорода, образуются СО2 и Н2О. При наличии в составе сополимера атома азота в продуктах сгорания присутствуют оксиды азота, при наличии атома серы - оксиды серы и т.д. при сжигании в атмосфере кислорода галогенсодержащих соединений образуются соответствующие галогенид-ионы. [c.37]

    Книга из серии монографий по общим вопросам аналитической химии посвящена одному из актуальных вопросов современной химии — органическому анализу. Автор книги — крупный венгерский ученый в области аналитической органической химии. Впервые в практике изданий, касающихся анализа органических соединений, объединяются методы качественного и количественного элементного и функционального анализа. [c.264]

    Методы обычного качественного анализа не пригодны непосредственно для элементного анализа органических соединений. Для открытия элементов, входящих в состав органических соединений, их необходимо перевести предварительно в неорганнческие соединения, которые далее исследуются обычным путем. [c.14]

    Первые синтезы органических веществ удалось провести немецкому химику Ф. Вёлеру. В 1824 г. он наблюдал образование щавелевой кислоты из дициана, а в 1828 г.— образование мочевины из цианата аммония. Были разработаны методы для элементного анализа органических соединений Ж- Дюма разработал метод количественного определения азота, а Ю. Либих — метод определения углерода и водорода в органических соединениях. В середине XIX в. быстро расцвел органический синтез. В 1845 г. Г. Кольбе синтезировал уксусную кислоту, в 50-е годы М. Бертло из простых неорганических веществ синтезировал муравьиную кислоту, этиловый спирт, ацетилен, бензол, метан, а из глицерина и жирных кислот получил жиры. [c.10]

    Применение полярографии и амперметрш в элементном анализе органических соединений. Терентьева Е. А., Малолина Т. М., Федорова М. В., СмирноваН. Н. Физические и физико-химические методы анализа органических соединений (Проблемы аналитической химии, т. I). М., Наука , 1970, стр, 155—164. [c.344]

    Элементный анализ органических соединений с газохроматографическим определением продуктов разложения 1. Метод определения азота. Непряхин аА. В , Чудакова И. К.. И о в и к о в а Г. А., Р а д и к о в а Г. Г., Д о м а н и н а О. Н. Методы анализа органических соединений нефти, их смесей и производных , сб. 2. М., Наука , 1969, стр. 107—114. [c.210]

    Элементный анализ органических соединений с газохроматографическим определением продуктов разложения П. Метод одновременного определения углерода, водорода и азота. Непряхина А. В., Чудакова И. К., Доманина О. H., Новикова Г. А., Радикова Г. Г. Методы анализа органических соединений нефти, их смесей и производных , сб. 2. М., Наука , 1969, стр. И5—120. [c.210]

    Элементный анализ, например, элементный анализ органических соединений — метод определения отдельных элементов, входящих в состав органических соединений. Чаще всего определяют содержание углерода, водорода, азота, кислорода [7—9]. Анализ состоит из двух стадий 1) разложение вещества с образованием неорганических соединений данного элемента (СОг, НгО, N113 и т.п.) 2) количественное определение соединений. [c.6]

    Период от А. Л. Лавуазье до возникновения теории химического строения характеризуется появлением и совершенствованием методов количественного анализа органических соединений. Установлением количественного элементного состава ряда соединений был заложен фундамент научного здания органической химии [1, стр. 41]. Лавуазье указал правильный путь, определив количества углекислоты и воды (последнюю — косвенным путем), об-разуюш иеся при полном сгорании навески данного вещ ества. Метод не был точным, но химики, работавшие в этом направлении, получили ценные результаты. Усовершенствование его Ж. Л. Гей-Люссаком, Л. Тенаром, И. Берцелиусом, Ю. Либихом дало в руки исследователей простой и надежный способ определения состава. С развитием аналитического метода существенно менялись воззрения на органические соединения. Химики все более убеждались в том, что закон кратных отношений применим также и к последним, что формулы, вошедшие в употребление при изучении минеральных веществ, применимы и к органическим [2, стр. 107]. [c.213]

    Наиболее исчерпывающую информацию о качествепном и количественном определении азота и азотсодержащих функциональных групп в различных органических соединениях можно найти в фундаментальном издании [868]. В настоящем разделе будет идти речь только об элементном анализе органических соединений на содержание азота. Обзор соответствующих методов см. [210, 391]. Обзору методов функционального анализа посвящена работа [215]. Основные методы микроэлементного и функционального анализа органических соединений описаны в книге [133]. [c.178]

    Исходя из изложенного, в элементном анализе органических соединений предложены безнавесочные методы определения стехиометрии молекул, характеризующих брутто-формулу вещества. В основном эти методы предназначены для выяснения стехиометрии элементов-органогенов углерода, водорода и азота. Они основаны на сравнении аналитических сигналов продуктов минерализации пробы вещества. В качестве таких сигналов служат, например, площади хроматографических пиков, объемы-титранта, общего для двух элементов, и др. Таким образом возможна работа без весов с микро- и ультрамикроколичествами. [c.225]

    Непряхина А.В.. Чудакова iA.К.,Новикова Г.А.,Радикова Г.Г.. Доманина О.Н. - В кн. Нетоды анализа органич. соед. нефти, их смесей и производных. .."Наука", 1969,107-114. Элементный анализ органических соединений с газохроматографи-ческим определенней продуктов разложения. I. Метод определения азота. [c.80]

    При выполнении элементного анализа органическое соединение разлагают таким образом, чтобы исследуемые элементы перешли в состав неорганических веществ. При этом углерод переходит в оксид углерода (IV), водород - в воду, азот - в циапид-иоп, аммиак или молекулярный азот, сера в сульфид. Дальнейшее определение элемента проводят обычными методами аналитической химии. [c.21]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]


Библиография для Методы элементного анализа органических соединений: [c.289]   
Смотреть страницы где упоминается термин Методы элементного анализа органических соединений: [c.14]    [c.133]    [c.458]    [c.495]    [c.14]    [c.80]    [c.806]   
Смотреть главы в:

Очерк общей истории химии -> Методы элементного анализа органических соединений




ПОИСК





Смотрите так же термины и статьи:

Анализ органический элементный

Анализ элементный

Органические соединения анализ

Органические элементный



© 2025 chem21.info Реклама на сайте